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This paper presents an integrated Digital Twin (DT) framework for cryogenic ejector systems
designed for Boil-Off Gas (BOG) management in Liquefied Natural Gas (LNG) applications.
Building on prior experimental and numerical studies, the proposed DT improves both predictive
accuracy and dynamic adaptability by coupling Physics-Informed Neural Networks (PINNs) with
a transient dynamic model. The PINN integrates compressible-flow conservation laws into its loss
function, ensuring physical consistency during learning. A dataset of 1,000 operating points was
analyzed, revealing that the primary pressure (Pp) is the dominant factor influencing the
entrainment ratio (ER). A baseline linear regression achieved an R2=0.791, while the PINN
increased predictive accuracy to R2=0.98. The dynamic model simulates the transient response of
the ejector to sudden variations in BOG load, demonstrating the DT’s capability to anticipate
system instability and enable real-time control. Together, these components create a physically
interpretable and computationally efficient digital framework capable of supporting the design,
optimization, and operation of cryogenic ejectors. The results highlight the potential of the
proposed DT to enhance energy efficiency, reliability, and safety in LNG processing systems

through intelligent, physics-based decision-making.

This is an open access article under the CC BY-SA 4.0 license.
(https://creativecommons.org/licenses/by-sa/4.0/)

1. INTRODUCTION

The efficient management of Boil-Off Gas (BOG) in
cryogenic  storage and transportation  systems—
particularly within Liquefied Natural Gas (LNG)
infrastructure—remains a critical challenge for both safety
and energy efficiency [1,2]. Continuous heat ingress into
cryogenic tanks causes partial vaporization of the stored
liquid, generating BOG that must be reliquefied or
consumed to maintain stable tank pressure. Among the
available technologies, supersonic ejectors have emerged
as a robust solution for BOG handling owing to their
simplicity, compactness, and lack of moving parts [3,4].
However, ejector performance, expressed through the
Entrainment Ratio (ER), is highly sensitive to geometry,
pressure ratios, and thermal conditions. This sensitivity
complicates design and real-time control, especially under
varying operating regimes.

The advent of the Digital Twin (DT) paradigm provides
a transformative approach to overcome these challenges.
A DT establishes a continuously updated virtual
counterpart of the physical system, enabling real-time
monitoring, predictive diagnostics, and optimization [5-7].

* Corresponding Author: lotfi.snoussi@jisste.ucar.tn

In cryogenic ejectors, such a DT can bridge the gap
between detailed Computational Fluid Dynamics (CFD)
simulations, which are accurate but computationally
demanding and purely data-driven surrogate models,
which are fast yet often physically inconsistent [8,9].

faces two

However, effective

fundamental

implementation

limitations: classical machine-learning
regressors often lack extrapolation ability as they ignore
governing fluid-dynamic laws, and most available models
describe only steady-state performance, failing to capture
the time-varying BOG flow inherent to practical LNG
operations. To address these challenges, this study
presents a comprehensive Digital Twin framework that
integrates two complementary components. First, Physics-
Informed Neural Networks (PINNs) are employed to
embed Reynolds-Averaged Navier—Stokes (RANS)
equations directly into the loss function, ensuring physical
consistency while enhancing accuracy [10-12]. Second, a
dynamic model based on one-dimensional gas-dynamic
formulations is incorporated to simulate transient
phenomena such as start-up, load changes, and control
actions [13-16]. Using a curated dataset of 1,000 operating

points, the proposed approach demonstrates substantial
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improvements in prediction accuracy and dynamic
response characterization, thereby contributing to the
development of physically reliable, real-time digital twins
for next-generation cryogenic and LNG infrastructures.

2. MATERIAL AND METHODS
2.1. Digital twin architecture and methodology

The proposed Digital Twin (DT) framework establishes
a seamless connection between the physical cryogenic
ejector system and its virtual counterpart through a
structured data acquisition and modeling pipeline (Figure
1).

The DT is designed as a closed-loop intelligent
architecture, combining real-time sensing, physics-based
learning, and dynamic simulation to enable predictive
control under variable Boil-Off-Gas (BOG) conditions.
[17-19]

2.1.1. Overall Architecture

Figure 1 conceptually illustrates the four main layers of
the system:

Physical Layer: Sensors installed on the ejector measure
primary and secondary pressures (B, P ), temperatures
(T,, T;), and flow rates in real time.

Data Interface Layer: Acquired data are filtered,
normalized, and transmitted to the virtual environment for
continuous synchronization.

Modeling Layer: This layer hosts two complementary
models:

a PINN-based
ensuring physically
Entrainment Ratio (ER).

a dynamic transient model that predicts the system’s
short-term evolution when BOG load or boundary
conditions change.

Control and Optimization Layer: The outputs of the
modeling layer feed a supervisory algorithm that
recommends real-time valve adjustments or control
strategies to maintain optimal ER and system stability.

This layered architecture guarantees a bi-directional
data flow—from the physical system to the DT for
learning and from the DT back to the plant for control
actions—ensuring that the virtual
synchronized with real-world operation.

performance model,
prediction of the

steady-state
consistent

model remains

PHYSICAL EJECTOR SYSTEM
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Figure 1. Conceptual architecture of the proposed Digital Twin
for cryogenic ejector systems

2.1.2. Methodological Workflow

The methodological workflow follows five main stages:

Data Preparation:

Experimental or simulated data describing geometric
parameters (NXP, Dm, Dne, Lm) and operating conditions
(B, B, Ty, Ty, Fy) are preprocessed and validated.

Baseline Modeling:

Linear and polynomial regressions are used as initial
benchmarks to assess linear correlations and identify the
dominant influence of A, on ER.

Physics-Informed Modeling:

A PINN integrates the Reynolds-Averaged Navier—
Stokes (RANS) equations within its loss function, ensuring
that mass, momentum, and energy conservation laws
constrain the learning process.

Dynamic Simulation:

Time-dependent ordinary differential equations (ODEs)
are solved to represent the transient mass-energy balance
in the mixing chamber.

Control Integration:

The DT couples both models to a decision module that
computes inputs to optimize
performance under disturbances.

The result is a modular, physics-aware digital twin
capable of learning from data, predicting unmeasured
states, and guiding real-time control with high physical
reliability.

corrective  control

2.2. Data and baseline analysis

To ensure a comprehensive representation of the
cryogenic ejector’s behavior, a hybrid data generation
strategy was adopted. The dataset employed for model
development comprises 1,000 data points generated using
a high-fidelity Computational Fluid Dynamics (CFD)
model. Prior to the generation of this synthetic database,
the CFD model was rigorously validated against
experimental results obtained from [1], ensuring its
physical accuracy and reliability.
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This approach allowed for the exploration of a broader
spectrum of conditions than is typically feasible through
experimentation alone. Each record in the dataset includes
the following variables:

Geometric parameters: Nozzle exit position (NXP),
mixing-throat diameter (D,,), nozzle exit diameter (D),
and mixing-length (L).

Operating conditions: Primary- and secondary-stream
pressures (B, F),, inlet and outlet temperatures (Tp, Ts),
and outlet pressure (P,).

Performance variable: The Entrainment Ratio (ER),
defined as the mass-flow-rate ratio of secondary to primary
fluid, which quantifies the ejector’s ability to entrain and
mix BOG.

2.2.1. Exploratory Data Analysis (EDA)

A preliminary EDA was carried out to assess data
consistency and identify the most influential parameters.
The correlation matrix (Figure 2) highlights a strong
positive correlation between B, and ER (= 0.92),
confirming that the primary-stream pressure is the
dominant driver of entrainment.

This finding aligns with the physical mechanism of
energy transfer in supersonic ejectors, where the high-
pressure primary jet entrains the secondary stream through
shear-induced momentum exchange.

Psbara Ppbara Lmmm Dnemm Dmmm  NXP.mm

Tp.K

Pobara  TsK

ER

NXP_mm Dm_mm Dnemm Lmmm Ppbara Psbara TpK ) Po_bara
Figure 2. Correlation Matrix of the input and output variables.

2.2.2. Baseline Model Construction

To establish a reference for subsequent PINN
comparison, a linear regression model was trained using
all input variables as predictors of ER. The dataset was
randomly split into training (80 %) and testing (20 %)
subsets. Model fitting was performed using a least-squares
criterion with z-score normalization to mitigate variable-
scale bias.

The baseline linear model achieved an R*=0.7910n the
test set, demonstrating that a linear relationship captures
the overall trend but fails to reproduce nonlinear
phenomena such as shock-wave formation, mixing-layer

development, and flow choking within the ejector.

Residual analysis revealed systematic deviations near
regime transitions (choked — unchoked), emphasizing the
limitations of purely statistical regression for strongly
nonlinear thermofluid processes.

2.2.3. Implications for Advanced Modeling

The baseline results provide two key insights: first, a
predominantly monotonic correlation between Pp and ER
confirms that primary pressure dominates entrainment
behavior; second, the remaining residual nonlinearity
justifies the need for physics-aware deep-learning models
capable of embedding governing equations. These
findings motivate the adoption of Physics-Informed
Neural Networks (PINNs) in the subsequent section to
achieve higher accuracy and ensure physical consistency
across unseen operating conditions. By integrating
machine learning with first-principles modeling, the
resulting Digital Twin operates as both a diagnostic tool
and a predictive controller. This hybrid framework—
leveraging the synergy between steady-state PINNs and
transient ODE-based models—can be extended to other
cryogenic components, such as heat exchangers, turbine
expanders, or LNG reliquefaction units, thereby
contributing to the next generation of intelligent cryogenic
energy systems.

2.3. Physics-informed neural networks (PINNs) for
performance modeling

To overcome the limitations of the baseline linear model
and ensure physical consistency, the Physics-Informed
Neural Network (PINN) approach was implemented as the
core predictive component of the Digital Twin. Unlike
conventional data-driven regressors that rely solely on
empirical data, the PINN framework embeds governing
physical laws—expressed as partial differential equations
(PDEs)—directly into the loss function. This hybrid
learning paradigm constrains the solution space to
physically  plausible regimes while enhancing
generalization across unobserved operating conditions.
[20-21]

2.3.1. Formulation and Loss Function

The total loss function minimized during training is
expressed as [22]:

mel = Ldam + A Lphysics (1)
Where:
Lgaa 1s the mean squared error (MSE) between

predicted and measured Entrainment Ratios (ER);

Lphysics  quantifies the residuals of the Reynolds-
Averaged Navier-Stokes (RANS)
compressible flow;

A is a weighting coefficient (typically 0.01-0.1)
balancing data fidelity and physical enforcement.

The physics residual term enforces the conservation of

mass, momentum, and energy within the ejector domain:

equations  for
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V-(pu) =0 (mass)
V:-(puu+pl —71) =0 (momentum) (2)
V- (puh) =0 (energy)

where p, u, p, and h denote density, velocity, pressure,
and specific enthalpy, respectively, and 7 is the stress
tensor.

2.3.2. Network Architecture

The adopted PINN architecture is summarized in Table

It comprises five hidden layers with 50 neurons per
layer and Tanh activation functions, providing sufficient
nonlinearity to capture complex thermofluid interactions.

The network inputs correspond to the geometric and
boundary variables ( NXP,D,,, By P, Ty, T ), while the
outputs include the flow-field quantities (p,u, P, T).

The ER is derived from these predicted flow properties
through the continuity equation at the nozzle exit.

Table 1. Architecture and Loss Function Components of the
Proposed PINN

Component Description Objective

Encodes
geometric and
boundary
conditions
Nonlinear
mapping of
input to flow
field
Prediction of
internal flow
field variables
Fit model to
observed data

Input Layer NXP, Dy, By, P, Ty, T

Hidden Layers | 5 layers x 50 neurons (Tanh

activation)

Output Layer pu,P,T

Lata MSE on experimental ER

Enforce
conservation of
mass,
momentum,
energy
Balance data vs.
physics
consistency

L MSE of RANS residuals

physics

A 0.01-0.1

2.3.3. Training and Performance

The PINN was trained using the Adam optimizer with a
learning rate of 107 for 5,000 epochs.

The inclusion of Lpes significantly stabilized the
training process, particularly in regions with sparse data,
by penalizing nonphysical predictions.

Compared with the baseline regression, the PINN
achieved a simulated R?=0.98, confirming a substantial
improvement in predictive accuracy and robustness across
different flow regimes.

The model also provides intermediate field variables
(pressure and velocity distributions), offering valuable
diagnostic information for the design and control of
cryogenic ejectors.

By embedding physics directly into the learning
process, the PINN acts not merely as a black-box predictor
but as a physics-aware surrogate model that enhances both
interpretability and trustworthiness of the Digital Twin.

2.4. Dynamic modelling for transient analysis

While the Physics-Informed Neural Network (PINN)
ensures accurate steady-state prediction, cryogenic
ejectors are rarely operated under stationary conditions.
Fluctuations in Boil-Off Gas (BOG) generation or
downstream pressure can alter the entrainment ratio (ER)
and degrade stability. To capture such behaviour, a
dynamic model was developed to describe the transient
mass- and energy-balance in the mixing chamber and
diffuser. The model relies on a one-dimensional
compressible-flow formulation, assuming quasi-steady
uniform properties within each control volume. The
governing equations are defined as [23]:

L (pV) = 1y, + 1h =i, 3)
= (peV) = miyhy, + 1ishy = 1itoh, + Q (4)
where p is density, V the control-volume volume,
1y, g, m,the mass-flow rates of primary, secondary, and
outlet streams respectively, h;the specific enthalpies, and
Q any net heat exchange. The mass-flow rates depend on
local pressures and the choked-flow condition, defined by:

m = CqAey/2pu(Pu — Pa) )
with Cq the discharge coefficient, A;the throat area, and
Pw Pq the upstream and downstream pressures.This
system of ordinary differential equations (ODEjs) is solved
using an adaptive Runge—Kutta (RK45) scheme, yielding
the time-dependent evolution of ER and outlet pressure
Pout-

This dynamic model operates in parallel with the PINN
to form the predictive core of the Digital Twin (as
illustrated in Figure 1). The PINN supplies initial steady-
state fields (density, pressure, velocity) to initialize the
dynamic solver, while the transient module continuously
predicts hypothetical
disturbances. These predictions allow the Optimization

short-term  evolution under
and Control Layer to pre-emptively adjust actuators during
BOG fluctuations. To evaluate the DT’s dynamic
response, a step increase in BOG mass-flow rate (+10% at
t=10s ) was simulated. The uncontrolled ejector exhibited
a damped response with ER dropping from 1.0 to = 0.7
before slowly recovering—behavior typical of under-
damped flow-mixing systems. By contrast, when the DT-
assisted controller used the dynamic model’s predictive
feedback to adjust the primary-flow valve, the ER
stabilized near 0.95 within 2s, demonstrating substantial
improvement in transient stability and responsiveness.
The integration of this physics-based dynamic model
provides critical temporal awareness, allowing for the
anticipation of instability before it manifests. It reduces
experimental dependence by simulating virtual transients
and ensures compatibility with real-time control due to its
low computational cost (< 10 ms per step on standard
CPUs). Future work will focus on coupling this module
with Model Predictive Control (MPC) and validating it on
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a cryogenic test bench for full deployment.

3. RESULTS AND DISCUSSION

This section presents the main results obtained from
both steady-state and transient analyses of the proposed
Digital Twin (DT) framework for the cryogenic ejector
system.

The discussion emphasizes the influence of geometric
and operating parameters on the Entrainment Ratio (ER),
the performance improvement achieved with the Physics-
Informed Neural Network (PINN), and the system’s
dynamic stability under load variations.

3.1. Data Visualization and Flow Regime Analysis

Figure 3 illustrates the complex interplay between the
ejector's performance, quantified by the Entrainment Ratio
(ER), and two critical geometric design parameters: the
Nozzle Exit Position (NXP) and the Mixing Chamber
Diameter (Dy,). The data points are visually segregated by
the observed flow regime, with blue markers denoting the
choked/optimal regime (Regime 1) and red markers
indicating the unchoked/backflow regime (Regime 2). The
visualization distinctly reveals that the achievement of
high ER values, which signifies optimal BOG
management efficiency, is confined to a relatively narrow
and well-defined subspace within the NXP and (D)
design domain. In this optimal region, the supersonic flow
is effectively maintained, ensuring stable entrainment and
minimal mixing losses. Conversely, any deviation from
this geometric sweet spot, or a shift in operational
conditions, leads to a pronounced and abrupt deterioration
in performance. This is evidenced by the clustering of red
markers, where the ER drops significantly due to
phenomena such as shock-wave detachment, premature
flow separation, and the onset of reverse flow, which
characterize the wunstable unchoked or backflow
conditions. The highly non-linear nature of this transition,
particularly the sharp boundary between the choked and
unchoked states, underscores the inherent limitation of
conventional linear regression or purely data-driven
models. This observation provides the foundational
justification for integrating Physics-Informed Neural
Networks (PINNs), as only a physically constrained model
can reliably predict and navigate these critical flow regime
transitions essential for high-fidelity Digital Twin
operation.
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3.2. PINN Performance Evaluation

The performance comparison between the baseline
linear regression model and the PINN model is shown in
Figure 4.

While the linear model achieved an R?=0.79, the
PINN—thanks to the inclusion of the RANS residual term
in its loss function—attained a simulated R?>=0.98 against
the test dataset.

Residual plots confirm that the PINN effectively
reduces systematic deviations near regime transition
boundaries, where compressibility and shock interactions
dominate.

Furthermore, the PINN  exhibits improved
generalization beyond the training range, as its embedded
physics allows meaningful extrapolation to unseen
conditions—a critical property for real-time control of
BOG systems.

Table II summarizes the performance comparison in
terms of accuracy and physical consistency.
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Table 2. Comparison between baseline linear model and PINN

Governin | R? | MA | Physical | Extrapol-
Model g E Consiste ation
Principle -ncy Capabilit
y
Linear Empirical 0.7 | 0.065 Low Poor
Regressio (data- 9
n only)
PINN Data + 09 | 0.018 High Excellent
RANS 8
PDE
constraints

These results demonstrate that embedding physical
knowledge not only enhances accuracy but also ensures
trustworthy predictions, crucial for safety-critical
cryogenic systems.

— Experimental Data
121 . paseline Linear Model (R2=0.79)
----- PINN Model (Simulated R=0.98)

08

Entrainment Ratio (ER)

0.4

T T T T T - T - -
0 25 50 5 100 125 150 175 200
Data Point Index (Sorted by ER)

Figure 4. Simulated Performance Comparison: PINN vs.
Baseline Model. Comparison of the predictive performance of
the baseline Linear Regression model (R? ~ 0.79) and the
simulated Physics-Informed Neural Network (PINN) model (R?
= (0.98) against experimental data

3.3. Transient Response and Control Effectiveness

Figure 5 illustrates the simulated transient response of
the Entrainment Ratio (ER) following a 10% step increase
in BOG load at t=10s.

Without control, the slow,
overdamped response, with ER dropping from 1.0 to 0.7
before gradual recovery. When the DT-assisted controller
utilizes the dynamic model’s predictions, the ER stabilizes
near 0.95 within 2-3 seconds, with minimal oscillations.

This behaviour confirms the predictive capability of the
DT to anticipate load disturbances and proactively adjust
control inputs. Such transient stabilization is critical for
LNG systems, where unregulated BOG surges may cause
operational instability or loss of refrigeration efficiency.

system exhibits a

.00 : — Uncontrolled System Response
3 === DT-Optimized Conirol System Response
+=+ BOG Load Step Change (t=10s)

0.954

= =
22 =
& £

Entrainment Ratio (ER)
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Figure 5. Simulated Transient Response of Ejector
Entrainment Ratio (ER). Time- domain simulation of the ER
following a sudden BOG load step change at t = 10s

3.4. 3.4. Discussion of Key Findings

The combined analysis of steady-state performance and
dynamic behaviour offers several critical insights into the
viability of the proposed Digital Twin. First, the results
underscore the dominant influence of the primary pressure
(B,) on the system's efficiency. The observed nearly linear
correlation between (F,) and the Entrainment Ratio (ER)
(p = 092) confirms that primary pressure is the
governing variable for determining entrainment capacity.
This physical relationship is robustly captured by the
PINN model, which demonstrates a significant advantage
over conventional methods. unlike purely statistical or
"black-box" models, the PINN achieves a near-perfect
correlation with measured data while strictly ensuring
compliance with mass and energy conservation laws. This
validates the model not just as a statistical approximator,
but as a physically faithful representation of the cryogenic
process.

Beyond steady-state accuracy, the system demonstrates
strong dynamic predictive capability. The ODE-based
dynamic module effectively complements the neural
network by capturing short-term transients with high
temporal resolution. This ability to track rapid fluctuations
is essential for managing BOG instabilities and provides
the necessary foundation for integrating Model Predictive
Control (MPC) strategies. Crucially, this high level of
fidelity does not compromise computational efficiency.
The trained PINN executes in less than 10 ms per
prediction on a standard CPU, and the dynamic simulation
remains fully compatible with real-time constraints. This
confirms that the developed Digital Twin is not merely a
theoretical model, but a computationally efficient solution
ready for online industrial deployment.

3.5. Implications for Industrial Deployment

The integration of machine learning and first-principles
modeling enables the Digital Twin to operate as both a
diagnostic tool and a predictive controller.

This hybrid framework can be extended to other
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cryogenic components such as heat exchangers, turbine
expanders, or LNG reliquefaction wunits, thereby
contributing to the next generation of intelligent cryogenic
energy systems.

4. CONCLUSIONS

This work has presented an integrated Digital Twin
(DT) framework for cryogenic ejector systems, combining
Physics-Informed Neural Networks (PINNs) and dynamic
modeling to achieve physically consistent and real-time
predictive performance.

The proposed approach addresses two long-standing
challenges in BOG (Boil-Off-Gas) management for LNG
processes:

(i) the lack of physically interpretable data-driven
models, and

(i) the absence of transient-aware predictive control.

A 1000-point dataset encompassing geometric and
thermodynamic parameters was used to train and validate
the models. The baseline linear regression yielded an
R?>=0.791, while the PINN—with  embedded
compressible-flow conservation laws—achieved an
improved predictive accuracy of R?=0.98. The dynamic
ODE-based module successfully reproduced the ejector’s
transient behavior during load disturbances, enabling the
DT to stabilize the entrainment ratio (ER) within seconds
after a sudden BOG variation.

The resulting Digital Twin thus operates as a hybrid
intelligent system, capable of continuous synchronization
between the physical and virtual domains, predictive
anomaly detection, and real-time optimization of ejector
performance.

Its computational efficiency and physics-awareness
make it suitable for deployment in industrial LNG
environments, where reliability and safety are paramount.
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