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 This paper presents an integrated Digital Twin (DT) framework for cryogenic ejector systems 

designed for Boil-Off Gas (BOG) management in Liquefied Natural Gas (LNG) applications. 

Building on prior experimental and numerical studies, the proposed DT improves both predictive 

accuracy and dynamic adaptability by coupling Physics-Informed Neural Networks (PINNs) with 

a transient dynamic model. The PINN integrates compressible-flow conservation laws into its loss 

function, ensuring physical consistency during learning. A dataset of 1,000 operating points was 

analyzed, revealing that the primary pressure (Pp) is the dominant factor influencing the 

entrainment ratio (ER). A baseline linear regression achieved an 𝑅2=0.791, while the PINN 

increased predictive accuracy to 𝑅2=0.98. The dynamic model simulates the transient response of 

the ejector to sudden variations in BOG load, demonstrating the DT’s capability to anticipate 

system instability and enable real-time control. Together, these components create a physically 

interpretable and computationally efficient digital framework capable of supporting the design, 

optimization, and operation of cryogenic ejectors. The results highlight the potential of the 

proposed DT to enhance energy efficiency, reliability, and safety in LNG processing systems 

through intelligent, physics-based decision-making. 
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1. INTRODUCTION 

The efficient management of Boil-Off Gas (BOG) in 

cryogenic storage and transportation systems—

particularly within Liquefied Natural Gas (LNG) 

infrastructure—remains a critical challenge for both safety 

and energy efficiency [1,2]. Continuous heat ingress into 

cryogenic tanks causes partial vaporization of the stored 

liquid, generating BOG that must be reliquefied or 

consumed to maintain stable tank pressure. Among the 

available technologies, supersonic ejectors have emerged 

as a robust solution for BOG handling owing to their 

simplicity, compactness, and lack of moving parts [3,4]. 

However, ejector performance, expressed through the 

Entrainment Ratio (ER), is highly sensitive to geometry, 

pressure ratios, and thermal conditions. This sensitivity 

complicates design and real-time control, especially under 

varying operating regimes. 

The advent of the Digital Twin (DT) paradigm provides 

a transformative approach to overcome these challenges. 

A DT establishes a continuously updated virtual 

counterpart of the physical system, enabling real-time 

monitoring, predictive diagnostics, and optimization [5-7]. 

In cryogenic ejectors, such a DT can bridge the gap 

between detailed Computational Fluid Dynamics (CFD) 

simulations, which are accurate but computationally 

demanding and purely data-driven surrogate models, 

which are fast yet often physically inconsistent [8,9].  

However, effective implementation faces two 

fundamental limitations: classical machine-learning 

regressors often lack extrapolation ability as they ignore 

governing fluid-dynamic laws, and most available models 

describe only steady-state performance, failing to capture 

the time-varying BOG flow inherent to practical LNG 

operations. To address these challenges, this study 

presents a comprehensive Digital Twin framework that 

integrates two complementary components. First, Physics-

Informed Neural Networks (PINNs) are employed to 

embed Reynolds-Averaged Navier–Stokes (RANS) 

equations directly into the loss function, ensuring physical 

consistency while enhancing accuracy [10-12]. Second, a 

dynamic model based on one-dimensional gas-dynamic 

formulations is incorporated to simulate transient 

phenomena such as start-up, load changes, and control 

actions [13-16]. Using a curated dataset of 1,000 operating 

points, the proposed approach demonstrates substantial 
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improvements in prediction accuracy and dynamic 

response characterization, thereby contributing to the 

development of physically reliable, real-time digital twins 

for next-generation cryogenic and LNG infrastructures. 

2. MATERIAL AND METHODS 

2.1. Digital twin architecture and methodology 

The proposed Digital Twin (DT) framework establishes 

a seamless connection between the physical cryogenic 

ejector system and its virtual counterpart through a 

structured data acquisition and modeling pipeline (Figure 

1). 

The DT is designed as a closed-loop intelligent 

architecture, combining real-time sensing, physics-based 

learning, and dynamic simulation to enable predictive 

control under variable Boil-Off-Gas (BOG) conditions. 

[17-19] 

2.1.1. Overall Architecture 

Figure 1 conceptually illustrates the four main layers of 

the system: 

Physical Layer: Sensors installed on the ejector measure 

primary and secondary pressures ( 𝑃𝑝, 𝑃𝑠 ), temperatures 

(𝑇𝑝, 𝑇𝑠), and flow rates in real time.  

Data Interface Layer: Acquired data are filtered, 

normalized, and transmitted to the virtual environment for 

continuous synchronization. 

Modeling Layer: This layer hosts two complementary 

models:  

a PINN-based steady-state performance model, 

ensuring physically consistent prediction of the 

Entrainment Ratio (ER). 

a dynamic transient model that predicts the system’s 

short-term evolution when BOG load or boundary 

conditions change. 

Control and Optimization Layer: The outputs of the 

modeling layer feed a supervisory algorithm that 

recommends real-time valve adjustments or control 

strategies to maintain optimal ER and system stability. 

This layered architecture guarantees a bi-directional 

data flow—from the physical system to the DT for 

learning and from the DT back to the plant for control 

actions—ensuring that the virtual model remains 

synchronized with real-world operation. 

 

 
Figure 1. Conceptual architecture of the proposed Digital Twin 

for cryogenic ejector systems 

2.1.2. Methodological Workflow  

The methodological workflow follows five main stages: 

Data Preparation: 

Experimental or simulated data describing geometric 

parameters (NXP, Dm, Dne, Lm) and operating conditions 

(𝑃𝑝, 𝑃𝑠, 𝑇𝑝, 𝑇𝑠, 𝑃𝑜) are preprocessed and validated. 

Baseline Modeling: 

Linear and polynomial regressions are used as initial 

benchmarks to assess linear correlations and identify the 

dominant influence of 𝑃𝑝 on ER. 

Physics-Informed Modeling: 

A PINN integrates the Reynolds-Averaged Navier–

Stokes (RANS) equations within its loss function, ensuring 

that mass, momentum, and energy conservation laws 

constrain the learning process.  

Dynamic Simulation: 

Time-dependent ordinary differential equations (ODEs) 

are solved to represent the transient mass-energy balance 

in the mixing chamber. 

Control Integration: 

The DT couples both models to a decision module that 

computes corrective control inputs to optimize 

performance under disturbances. 

The result is a modular, physics-aware digital twin 

capable of learning from data, predicting unmeasured 

states, and guiding real-time control with high physical 

reliability. 

2.2. Data and baseline analysis 

To ensure a comprehensive representation of the 

cryogenic ejector’s behavior, a hybrid data generation 

strategy was adopted. The dataset employed for model 

development comprises 1,000 data points generated using 

a high-fidelity Computational Fluid Dynamics (CFD) 

model. Prior to the generation of this synthetic database, 

the CFD model was rigorously validated against 

experimental results obtained from [1], ensuring its 

physical accuracy and reliability. 
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This approach allowed for the exploration of a broader 

spectrum of conditions than is typically feasible through 

experimentation alone. Each record in the dataset includes 

the following variables: 

Geometric parameters: Nozzle exit position (NXP), 

mixing-throat diameter (Dₘ), nozzle exit diameter (Dₙₑ), 

and mixing-length (Lₘ). 

Operating conditions: Primary- and secondary-stream 

pressures (𝑃𝑝, 𝑃𝑠 ),, inlet and outlet temperatures (𝑇𝑝, 𝑇𝑠), 

and outlet pressure (𝑃𝑜). 

Performance variable: The Entrainment Ratio (ER), 

defined as the mass-flow-rate ratio of secondary to primary 

fluid, which quantifies the ejector’s ability to entrain and 

mix BOG. 

2.2.1. Exploratory Data Analysis (EDA) 

A preliminary EDA was carried out to assess data 

consistency and identify the most influential parameters. 

The correlation matrix (Figure 2) highlights a strong 

positive correlation between 𝑃𝑝  and ER (≈ 0.92), 

confirming that the primary-stream pressure is the 

dominant driver of entrainment. 

This finding aligns with the physical mechanism of 

energy transfer in supersonic ejectors, where the high-

pressure primary jet entrains the secondary stream through 

shear-induced momentum exchange. 

 

Figure 2.  Correlation Matrix of the input and output variables. 

2.2.2. Baseline Model Construction 

To establish a reference for subsequent PINN 

comparison, a linear regression model was trained using 

all input variables as predictors of ER. The dataset was 

randomly split into training (80 %) and testing (20 %) 

subsets. Model fitting was performed using a least-squares 

criterion with z-score normalization to mitigate variable-

scale bias. 

The baseline linear model achieved an R2=0.791on the 

test set, demonstrating that a linear relationship captures 

the overall trend but fails to reproduce nonlinear 

phenomena such as shock-wave formation, mixing-layer 

development, and flow choking within the ejector. 

Residual analysis revealed systematic deviations near 

regime transitions (choked → unchoked), emphasizing the 

limitations of purely statistical regression for strongly 

nonlinear thermofluid processes.  

2.2.3. Implications for Advanced Modeling 

The baseline results provide two key insights: first, a 

predominantly monotonic correlation between Pp and ER 

confirms that primary pressure dominates entrainment 

behavior; second, the remaining residual nonlinearity 

justifies the need for physics-aware deep-learning models 

capable of embedding governing equations. These 

findings motivate the adoption of Physics-Informed 

Neural Networks (PINNs) in the subsequent section to 

achieve higher accuracy and ensure physical consistency 

across unseen operating conditions. By integrating 

machine learning with first-principles modeling, the 

resulting Digital Twin operates as both a diagnostic tool 

and a predictive controller. This hybrid framework—

leveraging the synergy between steady-state PINNs and 

transient ODE-based models—can be extended to other 

cryogenic components, such as heat exchangers, turbine 

expanders, or LNG reliquefaction units, thereby 

contributing to the next generation of intelligent cryogenic 

energy systems.  

2.3. Physics-informed neural networks (PINNs) for 
performance modeling 

To overcome the limitations of the baseline linear model 

and ensure physical consistency, the Physics-Informed 

Neural Network (PINN) approach was implemented as the 

core predictive component of the Digital Twin. Unlike 

conventional data-driven regressors that rely solely on 

empirical data, the PINN framework embeds governing 

physical laws—expressed as partial differential equations 

(PDEs)—directly into the loss function. This hybrid 

learning paradigm constrains the solution space to 

physically plausible regimes while enhancing 

generalization across unobserved operating conditions. 

[20-21] 

2.3.1. Formulation and Loss Function  

The total loss function minimized during training is 

expressed as [22]: 

𝐿total = 𝐿data + 𝜆. 𝐿physics                  (1) 

Where: 

𝐿data  is the mean squared error (MSE) between 

predicted and measured Entrainment Ratios (ER); 

𝐿physics  quantifies the residuals of the Reynolds-

Averaged Navier-Stokes (RANS) equations for 

compressible flow; 

𝜆  is a weighting coefficient (typically 0.01–0.1) 

balancing data fidelity and physical enforcement. 

The physics residual term enforces the conservation of 

mass, momentum, and energy within the ejector domain: 
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∇ ⋅ (𝜌𝐮) = 0 (mass)

∇ ⋅ (𝜌𝐮𝐮 + 𝑝𝐼 − 𝜏) = 0 (momentum)

∇ ⋅ (𝜌𝐮ℎ) = 0 (energy)

     (2) 

where 𝜌, 𝐮, 𝑝, and ℎ  denote density, velocity, pressure, 

and specific enthalpy, respectively, and 𝜏 is the stress 

tensor. 

2.3.2. Network Architecture 

The adopted PINN architecture is summarized in Table 

I. 

It comprises five hidden layers with 50 neurons per 

layer and Tanh activation functions, providing sufficient 

nonlinearity to capture complex thermofluid interactions. 

The network inputs correspond to the geometric and 

boundary variables ( 𝑁𝑋𝑃, 𝐷𝑚 , 𝑃𝑝, 𝑃𝑠 , 𝑇𝑝, 𝑇𝑠 ), while the 

outputs include the flow-field quantities (𝜌, 𝑢, 𝑃, 𝑇). 

The ER is derived from these predicted flow properties 

through the continuity equation at the nozzle exit. 

Table 1. Architecture and Loss Function Components of the 
Proposed PINN 

Component Description Objective 

Input Layer 𝑁𝑋𝑃, 𝐷𝑚, 𝑃𝑝, 𝑃𝑠, 𝑇𝑝, 𝑇𝑠 Encodes 

geometric and 

boundary 
conditions 

Hidden Layers 5 layers × 50 neurons (Tanh 

activation) 

Nonlinear 

mapping of 

input to flow 
field 

Output Layer 𝜌, 𝑢, 𝑃, 𝑇 Prediction of 

internal flow 

field variables 

𝐿data MSE on experimental ER Fit model to 

observed data 

𝐿physics MSE of RANS residuals Enforce 
conservation of 

mass, 

momentum, 
energy 

𝜆 0.01–0.1 Balance data vs. 

physics 
consistency 

2.3.3. Training and Performance 

The PINN was trained using the Adam optimizer with a 

learning rate of 10-3 for 5,000 epochs. 

The inclusion of  𝐿physics  significantly stabilized the 

training process, particularly in regions with sparse data, 

by penalizing nonphysical predictions. 

Compared with the baseline regression, the PINN 

achieved a simulated R2=0.98, confirming a substantial 

improvement in predictive accuracy and robustness across 

different flow regimes. 

The model also provides intermediate field variables 

(pressure and velocity distributions), offering valuable 

diagnostic information for the design and control of 

cryogenic ejectors. 

By embedding physics directly into the learning 

process, the PINN acts not merely as a black-box predictor 

but as a physics-aware surrogate model that enhances both 

interpretability and trustworthiness of the Digital Twin.  

2.4. Dynamic modelling for transient analysis 

While the Physics-Informed Neural Network (PINN) 

ensures accurate steady-state prediction, cryogenic 

ejectors are rarely operated under stationary conditions. 

Fluctuations in Boil-Off Gas (BOG) generation or 

downstream pressure can alter the entrainment ratio (ER) 

and degrade stability. To capture such behaviour, a 

dynamic model was developed to describe the transient 

mass- and energy-balance in the mixing chamber and 

diffuser. The model relies on a one-dimensional 

compressible-flow formulation, assuming quasi-steady 

uniform properties within each control volume. The 

governing equations are defined as [23]: 
𝑑

𝑑𝑡
(𝜌𝑉) = 𝑚̇𝑝 + 𝑚̇𝑠 − 𝑚̇𝑜      (3) 

𝑑

𝑑𝑡
(𝜌𝑒𝑉) = 𝑚̇𝑝ℎ𝑝 + 𝑚̇𝑠ℎ𝑠 − 𝑚̇𝑜ℎ𝑜 + 𝑄̇  (4) 

where ρ is density, V the control-volume volume, 

ṁp, ṁs, ṁothe mass-flow rates of primary, secondary, and 

outlet streams respectively, hithe specific enthalpies, and 

Q̇ any net heat exchange. The mass-flow rates depend on 

local pressures and the choked-flow condition, defined by: 

𝑚̇ = 𝐶𝑑𝐴𝑡√2𝜌𝑢(𝑝𝑢 − 𝑝𝑑)      (5) 

with Cd  the discharge coefficient, Atthe throat area, and 

pu, pd the upstream and downstream pressures.This 

system of ordinary differential equations (ODEs) is solved 

using an adaptive Runge–Kutta (RK45) scheme, yielding 

the time-dependent evolution of ER and outlet pressure 

pout.  

This dynamic model operates in parallel with the PINN 

to form the predictive core of the Digital Twin (as 

illustrated in Figure 1). The PINN supplies initial steady-

state fields (density, pressure, velocity) to initialize the 

dynamic solver, while the transient module continuously 

predicts short-term evolution under hypothetical 

disturbances. These predictions allow the Optimization 

and Control Layer to pre-emptively adjust actuators during 

BOG fluctuations. To evaluate the DT’s dynamic 

response, a step increase in BOG mass-flow rate (+10% at 

t=10s ) was simulated. The uncontrolled ejector exhibited 

a damped response with ER dropping from 1.0 to ≈ 0.7 

before slowly recovering—behavior typical of under-

damped flow-mixing systems. By contrast, when the DT-

assisted controller used the dynamic model’s predictive 

feedback to adjust the primary-flow valve, the ER 

stabilized near 0.95 within 2s, demonstrating substantial 

improvement in transient stability and responsiveness. 

The integration of this physics-based dynamic model 

provides critical temporal awareness, allowing for the 

anticipation of instability before it manifests. It reduces 

experimental dependence by simulating virtual transients 

and ensures compatibility with real-time control due to its 

low computational cost (< 10 ms per step on standard 

CPUs). Future work will focus on coupling this module 

with Model Predictive Control (MPC) and validating it on 
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a cryogenic test bench for full deployment.  

3. RESULTS AND DISCUSSION 

This section presents the main results obtained from 

both steady-state and transient analyses of the proposed 

Digital Twin (DT) framework for the cryogenic ejector 

system. 

The discussion emphasizes the influence of geometric 

and operating parameters on the Entrainment Ratio (ER), 

the performance improvement achieved with the Physics-

Informed Neural Network (PINN), and the system’s 

dynamic stability under load variations. 

3.1. Data Visualization and Flow Regime Analysis 

Figure 3 illustrates the complex interplay between the 

ejector's performance, quantified by the Entrainment Ratio 

(ER), and two critical geometric design parameters: the 

Nozzle Exit Position (NXP) and the Mixing Chamber 

Diameter (Dₘ). The data points are visually segregated by 

the observed flow regime, with blue markers denoting the 

choked/optimal regime (Regime 1) and red markers 

indicating the unchoked/backflow regime (Regime 2). The 

visualization distinctly reveals that the achievement of 

high ER values, which signifies optimal BOG 

management efficiency, is confined to a relatively narrow 

and well-defined subspace within the NXP and (Dₘ) 

design domain. In this optimal region, the supersonic flow 

is effectively maintained, ensuring stable entrainment and 

minimal mixing losses. Conversely, any deviation from 

this geometric sweet spot, or a shift in operational 

conditions, leads to a pronounced and abrupt deterioration 

in performance. This is evidenced by the clustering of red 

markers, where the ER drops significantly due to 

phenomena such as shock-wave detachment, premature 

flow separation, and the onset of reverse flow, which 

characterize the unstable unchoked or backflow 

conditions. The highly non-linear nature of this transition, 

particularly the sharp boundary between the choked and 

unchoked states, underscores the inherent limitation of 

conventional linear regression or purely data-driven 

models. This observation provides the foundational 

justification for integrating Physics-Informed Neural 

Networks (PINNs), as only a physically constrained model 

can reliably predict and navigate these critical flow regime 

transitions essential for high-fidelity Digital Twin 

operation. 

 
 

 

Figure 3.a.  Entrainment Ratio (ER) vs. Nozzle Exit Position 
(NXP); (blue: choked/optimal, red: unchoked/backflow).  

 

Figure 3.b. Entrainment Ratio (ER) vs. Mixing Chamber 
Diameter (Dm) ; (blue: choked/optimal, red: 

unchoked/backflow). 

3.2. PINN Performance Evaluation 

The performance comparison between the baseline 

linear regression model and the PINN model is shown in 

Figure 4. 

While the linear model achieved an R2=0.79, the 

PINN—thanks to the inclusion of the RANS residual term 

in its loss function—attained a simulated R2=0.98 against 

the test dataset. 

Residual plots confirm that the PINN effectively 

reduces systematic deviations near regime transition 

boundaries, where compressibility and shock interactions 

dominate. 

Furthermore, the PINN exhibits improved 

generalization beyond the training range, as its embedded 

physics allows meaningful extrapolation to unseen 

conditions—a critical property for real-time control of 

BOG systems. 

Table II summarizes the performance comparison in 

terms of accuracy and physical consistency. 
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Table 2. Comparison between baseline linear model and PINN 

 

Model 

Governin

g 

Principle 

𝑹𝟐 MA

E 

Physical 

Consiste

-ncy 

Extrapol-

ation 

Capabilit

y 

Linear 

Regressio

n 

Empirical 

(data-

only) 

0.7

9 

0.065 Low Poor 

PINN Data + 
RANS 

PDE 

constraints 

0.9
8 

0.018 High Excellent 

 

These results demonstrate that embedding physical 

knowledge not only enhances accuracy but also ensures 

trustworthy predictions, crucial for safety-critical 

cryogenic systems. 

 

 

Figure 4. Simulated Performance Comparison: PINN vs. 
Baseline Model. Comparison of the predictive performance of 

the baseline Linear Regression model (R2 ≈ 0.79) and the 
simulated Physics-Informed Neural Network (PINN) model (R2 

= 0.98) against experimental data 

3.3. Transient Response and Control Effectiveness 

Figure 5 illustrates the simulated transient response of 

the Entrainment Ratio (ER) following a 10% step increase 

in BOG load at t=10 s. 

Without control, the system exhibits a slow, 

overdamped response, with ER dropping from 1.0 to 0.7 

before gradual recovery. When the DT-assisted controller 

utilizes the dynamic model’s predictions, the ER stabilizes 

near 0.95 within 2–3 seconds, with minimal oscillations. 

This behaviour confirms the predictive capability of the 

DT to anticipate load disturbances and proactively adjust 

control inputs. Such transient stabilization is critical for 

LNG systems, where unregulated BOG surges may cause 

operational instability or loss of refrigeration efficiency. 

 

Figure 5.   Simulated Transient Response of Ejector 
Entrainment Ratio (ER). Time- domain simulation of the ER 

following a sudden BOG load step change at t = 10s 

3.4. 3.4. Discussion of Key Findings 

The combined analysis of steady-state performance and 

dynamic behaviour offers several critical insights into the 

viability of the proposed Digital Twin. First, the results 

underscore the dominant influence of the primary pressure 

(𝑃𝑝) on the system's efficiency. The observed nearly linear 

correlation between (𝑃𝑝) and the Entrainment Ratio (ER) 

( 𝜌 ≈  0.92 )  confirms that primary pressure is the 

governing variable for determining entrainment capacity. 

This physical relationship is robustly captured by the 

PINN model, which demonstrates a significant advantage 

over conventional methods. unlike purely statistical or 

"black-box" models, the PINN achieves a near-perfect 

correlation with measured data while strictly ensuring 

compliance with mass and energy conservation laws. This 

validates the model not just as a statistical approximator, 

but as a physically faithful representation of the cryogenic 

process. 

Beyond steady-state accuracy, the system demonstrates 

strong dynamic predictive capability. The ODE-based 

dynamic module effectively complements the neural 

network by capturing short-term transients with high 

temporal resolution. This ability to track rapid fluctuations 

is essential for managing BOG instabilities and provides 

the necessary foundation for integrating Model Predictive 

Control (MPC) strategies. Crucially, this high level of 

fidelity does not compromise computational efficiency. 

The trained PINN executes in less than 10 ms per 

prediction on a standard CPU, and the dynamic simulation 

remains fully compatible with real-time constraints. This 

confirms that the developed Digital Twin is not merely a 

theoretical model, but a computationally efficient solution 

ready for online industrial deployment. 

3.5. Implications for Industrial Deployment 

The integration of machine learning and first-principles 

modeling enables the Digital Twin to operate as both a 

diagnostic tool and a predictive controller. 

This hybrid framework can be extended to other 
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cryogenic components such as heat exchangers, turbine 

expanders, or LNG reliquefaction units, thereby 

contributing to the next generation of intelligent cryogenic 

energy systems. 

4. CONCLUSIONS 

This work has presented an integrated Digital Twin 

(DT) framework for cryogenic ejector systems, combining 

Physics-Informed Neural Networks (PINNs) and dynamic 

modeling to achieve physically consistent and real-time 

predictive performance. 

The proposed approach addresses two long-standing 

challenges in BOG (Boil-Off-Gas) management for LNG 

processes:  

(i) the lack of physically interpretable data-driven 

models, and  

(ii) the absence of transient-aware predictive control. 

A 1000-point dataset encompassing geometric and 

thermodynamic parameters was used to train and validate 

the models. The baseline linear regression yielded an 

R2=0.791, while the PINN—with embedded 

compressible-flow conservation laws—achieved an 

improved predictive accuracy of R2=0.98. The dynamic 

ODE-based module successfully reproduced the ejector’s 

transient behavior during load disturbances, enabling the 

DT to stabilize the entrainment ratio (ER) within seconds 

after a sudden BOG variation. 

The resulting Digital Twin thus operates as a hybrid 

intelligent system, capable of continuous synchronization 

between the physical and virtual domains, predictive 

anomaly detection, and real-time optimization of ejector 

performance. 

Its computational efficiency and physics-awareness 

make it suitable for deployment in industrial LNG 

environments, where reliability and safety are paramount. 
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