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ARTICLE INFO ABSTRACT

Article history: This study aims to develop a convolutional neural network based classification framework that
Received 18 November 2025 can distinguish between synthetic and real animal images generated by the Stable Diffusion
Accepted 29 December 2025 Turbo model. Additionally, this study will evaluate the performance of different network
Keywords: architectures for this task. The study employed a balanced dataset of 31,995 images, including

Stable Diffusion Turbo,
Real - Synthetic Image
Classification,

16,000 real images and 15,995 synthetic images generated by Stable Diffusion Turbo. The dataset
includes eight animal categories: dogs, cats, cows, rabbits, horses, sheep, chickens, and elephants.

MobileNetV2, All images were resized to 224 by 224 pixels, and standard preprocessing techniques were applied.
DenseNet121, During the classification stage, five pretrained convolutional neural network architectures were
DenseNet169, retrained using transfer learning, including MobileNetV2, DenseNet121, DenseNetl69,
DenseNet201, DenseNet201, and NASNetMobile. Model performance was evaluated using accuracy, precision,
NASNetMobile recall, the F1 score, the area under the curve of the receiver operating characteristic, confusion

matrices, and training time. The experimental results demonstrate that MobileNetV2 and
DenseNet201 achieved the highest classification performance, with respective accuracy rates of
99.58% and 99.56%, and perfect area under the curve values. All DenseNet variants exhibited
complete sensitivity in detecting synthetic images, whereas NASNetMobile showed substantially
lower performance compared to the other models. These results suggest that synthetic images
produced by diffusion-based generative models can be reliably identified when appropriately
designed CNN architectures and balanced datasets are used. This provides a significant
methodological contribution to the discrimination of synthetic versus real images, the detection of
fake content, and the verification of visual authenticity.

This is an open access article under the

CC BY-SA 4.0 license.
(https://creativecommons.org/licenses/by-
sa/4.0/)

1. INTRODUCTION success and immediate popularity of GANs in the domain
of computer vision [1]. In recent years, there has been a
proliferation of variants of GANs developed with the
objective of producing high-quality and photorealistic
images [2].

The utilization of artificial image production can prove
to be highly advantageous in a multitude of scenarios.
However, it is imperative to acknowledge the potential
risks associated with this practice, particularly in contexts
pertaining to security, reliability, and ethical
considerations. In the medical field, for instance,
Generative Adversarial Networks (GANs) are employed to
generate synthetic images, thereby enhancing the efficacy
of Convolutional Neural Network (CNN) models. This
approach is instrumental in addressing the challenge of
insufficient data [3, 4]. In a similar vein, artificial image
generation has been extensively utilized across a range of
disciplines, including agriculture [5, 6], cybersecurity [7],

In recent years, advancements in technology have led to
significant improvements in the efficiency and speed of
visual content production. This complicates the
discernment of the distinction between authentic
photographs and those produced by artificial intelligence.
This is particularly salient in the context of deep generative
models, which have the capacity to generate visual content
that exhibits a high degree of realism. In 2014, Goodfellow
et al. developed Generative Adversarial Networks
(GANSs), which represented a significant milestone in the
field of deep learning-based image production. GANs
employ an adversarial learning paradigm, whereby two
networks are trained concurrently. One network generates
synthetic images, while the other network is tasked with
differentiating between authentic and fabricated images.
This adversarial training has contributed to the remarkable
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vehicle and intelligent transportation systems [8].
However, diffusion-based generative models have
recently emerged as a compelling alternative to GANS.
This is due to the fact that they are easier to train, produce
superior images, and exhibit greater diversity. Denoising
Diffusion Probabilistic Models (DDPMs) established the
foundational framework for the field by conceptualizing
image production as a progressive denoising process.
Subsequently, Latent Diffusion Models (LDMs) emerged
as a more affordable solution by operating within lower-
dimensional latent spaces. A significant number of
individuals employ Stable Diffusion, an open-source
LDM, due to its user-friendly interface and its ability to
generate high-quality images from text-based prompts [9].

The present study examines the effectiveness of
convolutional neural network (CNN)-based models in
discriminating authentic images from synthetic images
generated by Stable Diffusion Turbo (SD Turbo), a
diffusion-based generative model designed to accelerate
the sampling process of
frameworks. To this end, a balanced dataset consisting of
16,000 real images and 15,995 synthetic images generated
by SD Turbo was constructed and utilized for the
classification task. The experimental work utilizes transfer
learning to enhance numerous pre-trained CNN
architectures, including NASNetMobile, MobileNetV2,
DenseNet121, DenseNet169, and DenseNet201. Each
design's capacity to differentiate between authentic images
and those generated by diffusion was meticulously
evaluated.

conventional diffusion

In this context, with the increasing prevalence of
diffusion-based production models, current approaches in
the literature aimed at reliably distinguishing between
synthetic and real images have been examined.

Lokner Ladevi¢ et al. (2024), stressed that figuring out
how to tell the difference between Al-generated
photographs and actual ones has been an important
research challenge in the last several years. They said that
existing ways of finding false images, which mostly
depend on hand-crafted features, are becoming less and
less useful as GAN-based picture-generating algorithms
evolve more complicated. In this situation, the authors
suggested a simple CNN design with eight convolutional
layers and two fully connected layers. The suggested
model was thoroughly tested on two conventional
benchmark datasets and a new dataset made from Sentinel-
2 satellite photos. The suggested architecture attained an
accuracy of 97.32% on the CIFAKE dataset, surpassing or
matching the performance of four leading methodologies
[10].

Y. Patel et al. (2023) did a study that showed many of
the current deepfake spotting algorithms are not good at
finding differences between frames in movies or pictures.
The writers showed a better deep convolutional neural
network (D-CNN) architecture to get around this problem.

The trial test used a total of 15,000 photos, with 10,000
real photos and 5,000 deepfake photos from seven
different datasets under the Reconstruction Challenge
framework. It was found that the suggested D-CNN
worked very well with a number of GAN-based creation
methods. StarGAN got it right 99.17% of the time,
AttGAN got it right 95.33% of the time, GDWCT got it
right 94.67% of the time, and StyleGAN got it right
94.67% of the time. It turns out that the suggested way not
only finds things well, but it also works well with many
different GAN sources [11].

Bird and Lotfi (2024) created a new real-synthetic
dataset called CIFAKE by using a latent diffusion method
to make synthetic pictures that look like the CIFAR-10
structure. A total of 36 different CNN designs were tested
on this dataset. The model that did the best got an accuracy
rate of 92.98%. Grad-CAM analyses showed that the
decisions about how to classify things were mostly based
on small visual differences in the background, not on what
the items meant. The study gives researchers working on
synthetic picture detection a clear and easy-to-understand
standard to use [12].

Mallet et al
misinformation

(2023) emphasized the risks of
stemming widespread
dissemination of deepfake content on social media and
devised a hybrid CNN-SVM approach for identifying
deepfake photos. The study employed the publicly
available 140k Real and Fake Faces dataset, and the
proposed model achieved a classification accuracy of
88.33% in identifying deepfake images. The findings
indicate that hybrid machine learning techniques offer a
viable and effective approach for deepfake detection tasks.
[13].

Raza et al. (2022) suggested that deepfake content poses
a significant hacking threat, potentially resulting in
identity theft, extortion, and misinformation. They
proposed an innovative method for detecting deepfakes
with deep learning techniques. They utilized a dataset
comprising authentic and fabricated facial photos to
develop a Deepfake Predictor (DFP) model that integrates
VGG16 with a CNN architecture. Advanced transfer
learning models such as Xception, NASNet, and
MobileNet were employed to evaluate the proposed DFP.
It outperformed these models, with an accuracy of 94%
and a precision of 95%. The findings indicate that the
proposed method is effective for detecting deepfakes in
digital forensic applications [14].

Abir et al. (2023), talked about how deepfake content is
having a bigger effect on society and looked at how well
and how easy it is to find deepfake content. Four CNN
designs were looked at in the study: InceptionV3,
DenseNet201, ResNet152V2, and InceptionResNetV2. It
used a large dataset from Kaggle that included 70,000 real
pictures (Flickr—NVIDIA) and 70,000 256x256-pixel fake
photos made by StyleGAN. The three models all did a

from the
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great job of putting facts in order. With a rate of 99.81%,
DenseNet201 was the most correct. With a score of
99.68%, InceptionV3 came in second. Third place went to
ResNet152V2, which got it right 99.19% of the time.
There was one model that was right 99.87% of the time,
and that was InceptionResNetV2. LIME-based
explainability analysis showed that it could make smart
decisions. The results show that combining deep learning
and explainable Al (XAI) might be the best way to find
deepfake pictures that can be trusted [15].

Chen et al. (2025) treat diffusion models as a
probabilistic framework based on forward noise reduction
and reverse denoising processes in image production. They
systematically compare three major formulations from the
DDPM, score-based models, and the
continuous-time approach based on SDEs that combines
them. The authors also discuss guidance strategies for

literature:

conditional production and acceleration methods to
improve sampling efficiency and stability. Additionally,
they address the socio-ethical impacts of diffusion-based
production, including privacy, copyright, bias, and abuse
[16].

Rahat et al. (2025) propose Automated Generative
Augmentation (AGA), a framework that reduces data
scarcity in fine-grained image classification. AGA
produces richer training data by segmenting and
preserving the subject (foreground), while increasing
background diversity through large language model
(LLM)-based prompt diversification and diffusion-based
synthesis. It also applies controlled manipulation to the
subject using affine transformations. Evaluations on
ImageNet, CUB, and iWildCam showed that AGA
improved in-distribution accuracy by 15.6%, out-of-
distribution accuracy by 23.5%, and SIC score by 64.3%
compared to basic approaches. Grad-CAM analyses
showed that the model's attention was more consistently
directed to the target subject regions. However, subject-
background context mismatches led to
inconsistencies in some examples, revealing room for
improvement in terms of contextual suitability [17].

Siddiqui et al. (2025) propose a hybrid detection
approach combining DenseNetl21-based local feature
extraction and global contextual modeling capabilities via
Cross-ViT. This approach addresses the growing security
risks posed by increasingly persuasive face-focused
deepfakes. The study aims to achieve competitive
performance without complex strategies like distillation or
ensemble, utilizing a voting-based inference mechanism to
improve decision stability when multiple faces are present
in a single frame. Experiments showed that the method
achieved an area under the curve (AUC) of 99.99% and an
average F1 score of 99.0% in DeepForensics 1.0 and an
AUC of 97.4% and an F1 score of 95.1% in CelebDF.
However, generalization to unknown fake samples is noted
as an area that needs improvement in the future with richer

visual

feature representation [18].

Banerjee (2025) proposes a neural architecture search
(NAS)-based deep learning model to improve the accuracy
of deepfake detection. The model enhances the quality of
the input by performing face and related region
segmentation with YOLOvS8 during the preprocessing
phase. It also expands the diversity of the sample through
data augmentation. For the study, frames were extracted
from 100 real and 100 deepfake videos selected from the
CelebDF v2 dataset. Then, a training set consisting of
2,000 real and 2,000 deepfake images was created after
augmentation. The proposed approach achieved 99.04%
accuracy in testing. With high precision, recall, and F1
values, the model demonstrated its ability to reduce false
positives while effectively detecting real deepfake
samples. The comparative analysis reported that the
scenario using YOLOvS8-based face extraction and
augmentation yielded significantly better results than the
scenario without segmentation or augmentation. This
conclusion suggests that components
significantly strengthen deepfake classification [19].

A comprehensive assessment of these studies indicates
that, although existing methods yield strong performance,
they still exhibit notable limitations when confronted with
diverse data sources, emerging generative models, and
large-scale real-synthetic image distributions.

these two

Consequently, a systematic comparison of models from
different architectural families such as DenseNet,
MobileNet, and NASNet for the classification of real and
Al-generated images is essential, both to better understand
performance variations and to develop more reliable and
lightweight detection systems suitable for practical
applications. By addressing this gap in the literature, the
present study aims to provide a thorough evaluation of
modern CNN architectures on a large-scale dataset and to
offer a more comprehensive, up-to-date, and practically
applicable framework for synthetic image detection.

The remainder of this paper is organized as follows. As
delineated in Section 2, the characteristics of the dataset
are described, along with the CNN architectures employed
and the data preprocessing and enhancement procedures.
The third section of the text presents the experimental
results and discusses them through analysis. The final
section of the study presents the summary of the results
and potential future research directions.

2. MATERIAL AND METHODS

In this section, the dataset forming the experimental
design of the study, the preprocessing steps, the structural
components of the deep learning models, the training
protocol, and the performance evaluation metrics are
presented in detail. Figure 1 presents the workflow
diagram of the proposed methodology.
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Figure 1. Workflow Diagram
2.1. Dataset and Preprocessing

The dataset used in this study consists of a total of
31,995 images and comprises two primary classes: real
and artificially generated (AI) images. The real image
class includes 16,000 natural animal photographs, while
the artificial image class consists of 15,995 synthetic
animal images generated using the Stable Diffusion Turbo
(SD-Turbo) model. The animal images in the dataset cover
eight distinct categories: dog, cat, cow, rabbit, horse,
sheep, chicken, and elephant. The number of images in
both classes was kept balanced to prevent the model from
developing bias due to class imbalance. During the
preprocessing stage, all images were resized to a resolution
0f 224x224 pixels to ensure compatibility with the selected
model architectures, and pixel values were normalized
accordingly.

Table 1. Class distribution of the dataset

Class Training Validation Test Set Total
Set Set

Al 11196 2399 2400 15995

Real 11200 2400 2400 16000

Total 22396 4799 4800 31995

Table 1 presents the quantitative distribution of the
dataset used in this study across the training, validation,
and test sets for the artificial (Al) and real (Real) classes.
The dataset consists of a total of 31,995 images, with the
number of samples kept balanced between the two classes.
Specifically, the Al class contains 15,995 images, while
the Real class includes 16,000 images. The training set
comprises 22,396 images, whereas the validation and test
sets contain 4,799 and 4,800 images, respectively. This
balanced distribution ensures that the model is trained and
evaluated without developing class-related bias.

Figure 2. Representative examples of synthetic images
belonging to the Al class in the dataset

Figure 2 shows representative examples selected from
the Al-generated image dataset. The images illustrate the

synthetic data distribution and the intra-class diversity
used during model training.

Figure 3. Representative examples of real images belonging to
the Real class in the dataset

Figure 3 shows representative examples selected from
the real image dataset. These images reflect the natural
data distribution and illustrate the intra-class diversity used
during model training.

2.2. Experimental Setup and Training Parameters

In this section, the experimental environment in which
the deep learning-based classification studies were
conducted is described in detail. In addition to the
hardware and software infrastructure used during model
training and evaluation, the core libraries employed and
the hyperparameter configurations of the network
architectures are systematically presented.

Table 2. Hardware and software components used in the
experimental study environment

Component Description
Processor (CPU) Intel Xeon processor with 12
cores
Memory (RAM) 167 GB
Graphics Processing Unit (GPU) NVIDIA A100-SXM4-80GB
Software Frameworks CUDA 12.5.82, PyTorch 2.8.0

Table 2 summarizes the hardware and software
components used in the experimental studies. The training
processes were conducted on a high-capacity system
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equipped with a 12-core Intel Xeon processor and 167 GB ~ Table 3. Library information in the experimental study

of RAM. The NVIDIA A100-SXM4-80GB GPU, with its ~ cVironment

high parallel processing capability and large memory TI:IibraFr)y V;rgi;)n
capacity, significantly reduced the computational cost of P;l::iaz 222
the deep learning models. The software environment was Scikit-learn 1.6.1
built on CUDA 12.5.82 and PyTorch 2.8.0, enabling Matplotlib 3.10.0

Table 3 lists the experimental study's primary Python
libraries and their versions. NumPy (v2.0.2) and Pandas
(v2.2.2) offer basic data and math capabilities. Scikit-learn
(v1.6.1) helped us calculate model evaluation measures
and other machine learning tasks. We plotted training-

efficient and stable training through GPU-accelerated
computations.

related losses, accuracy, and performance indicators
using Matplotlib (v3.10.0). Using up-to-date libraries
helps keep the experimental setup stable and
reproducible.

Table 4. Hyperparameter Configuration of the Employed Models

Hyperparameter Value Description
It represents the number of samples simultaneously fed into the model at each
training iteration [20, 21]. This hyperparameter plays a critical role in
determining memory requirements while also contributing to the stability of the
optimization process [22].

It refers to the number of epochs specified for the initial phase of transfer
learning during which the pre-trained layers are frozen. This stage enables
training exclusively of the newly added classification layers.

It denotes the number of additional training epochs performed after unfreezing
the upper layers of the model during the fine-tuning stage. This process
contributes to better adaptation of the model to the target dataset.

It specifies the number of final layers that are unfrozen (made trainable) during
the fine-tuning stage. This hyperparameter determines how much of the pre-
trained network is re-optimized.

It refers to the learning rate used during the initial training phase with frozen
layers. This value is selected to enable rapid yet stable adaptation of the
classification layers.

It denotes the low learning rate applied during the fine-tuning stage, allowing
for delicate parameter updates without disrupting the model’s previously
learned representations.

It represents the patience threshold of the early stopping mechanism used to
terminate training when no improvement is observed in the validation loss [23].
This strategy is employed to prevent overfitting.

It specifies the number of epochs with no improvement in validation loss
required to trigger the learning rate reduction mechanism. This parameter
supports the optimization process when training reaches a plateau.

It represents the deterministic initialization value that ensures the
reproducibility of data splitting, weight initialization, and other stochastic
processes [24, 25]. This parameter is critical for maintaining experimental
consistency.

It defines the input image size of the model. Prior to training, all images were
resized to a resolution of 224x224 pixels to ensure compatibility with the
standard input format required by the network architectures.

Batch Size 32

Epochs Frozen 15

Epochs Ft 10

Unfreeze Last 30

Learning Rate Frozen 0.0001

Learning Rate Ft 0.00001

Patience Early Stopping 10

Patience Reduce LR 5

Random Seed 42

Image Size 224

Table 4 lists the basic hyperparameter parameters used
during model training. The batch size was 32, and transfer
learning was two-stage. First, the pre-trained layers were
frozen and the models trained for 15 epochs. The final 30
layers were unfrozen and fine-tuned for 10 epochs in the
second step. Using 1x107° learning rates for each stage
allowed for more controlled optimization. Early stopping
(10 patience) and learning rate lowering (5 patience)
reduced overfitting risk. All trials were replicated using a
random seed value of 42 and a fixed model input size of
224x224 pixels, as per CNN architecture specifications.

2.3. Deep Learning Architectures

Pre-trained CNN-based deep learning architectures
were used to classify real photographs from fake ones in

this study. Both lightweight designs for mobile and
resource-limited contexts (MobileNetV2 and
NASNetMobile) and more complicated architectures with
densely  connected  frameworks  (DenseNetl21,
DenseNet169, and DenseNet201) were retrained using
transfer learning. The classification architectures' core
structural and operational ideas are briefly covered in this
section.

2.3.1. MobileNetV2

MobileNetV2 preserves the use of Depthwise Separable
Convolutions (DSC) introduced in MobileNetV1,
reducing the number of parameters and computational cost
to approximately 18% compared to standard convolution
operations [26, 27]. The model employs Linear Bottleneck
layers and Inverted Residual blocks to mitigate the
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information loss caused by ReLU activations in low-
dimensional feature spaces [28, 29]. In these blocks, the
input is first expanded into a higher-dimensional space,
then filtered through depthwise
subsequently projected back to a low-dimensional
representation via a linear convolution. [26, 30, 31].
2.3.2. DenseNet121

Huang et al. presented DenseNet, an architecture in
which each layer in a dense block gets the feature maps
from all the layers before it as input [29]. Thus, the £-th
layer operates on the concatenated feature maps from all

convolution, and

earlier layers and processes them through a BN-ReLU-
Conv sequence [32, 33]. There are four dense blocks in the
design, each separated by transition layers that do 1x1
convolutions and 2x2 average pooling operations. After
that, there is a fully connected layer with a softmax
activation that gives the class probabilities [33-36].

2.3.3. DenseNetl69

DenseNet-169 starts with a convolutional and pooling
layer, then has four dense blocks, each separated by a
transition layer. It ends with a classification layer that has
a softmax activation function [37]. Batch normalization
(BN), Rectified Linear Unit (ReLU) activation, and
convolution processes are all part of each convolutional
layer [38]. In each dense block, there are 1x1
convolutional layers followed by 3x3 convolutional
layers. In DenseNet-169, there are four dense blocks, each
with 6, 12, 32, and 32 pairs of 1x1-3%3 convolutional
layers. This makes a total of 82 convolutional pairings
[39].

2.3.4. DenseNet201

DenseNet201 facilitates feature map reutilization by

transmitting the output of each layer to all future layers in
Table 5. Performance Metrics

a feed-forward fashion, thus diminishing the parameter
number and overall model complexity while enhancing
computational efficiency [40]. The architecture consists of
Dense Block structures where the spatial dimensions of
feature maps are invariant inside each block, and
Transition Layers between blocks that execute
downsampling via batch normalization, 1x1 convolution,
and 2x2 pooling operations [41].

2.3.5. NASNetMobile

NASNetMobile is designed to be computationally
efficient for mobile applications and autonomously
generates a CNN architecture optimized for mobile
devices using a neural architecture search (NAS)
algorithm [42, 43]. The architecture consists of multiple
convolutional layers with varying filter sizes, max-pooling
layers that downsample feature maps, and skip
connections that enhance information flow and mitigate
the vanishing gradient problem. The core of
NASNetMobile is formed by reusable and composable
subnetworks known as Cells. These cells are categorized
into two types: Normal Cells and Reduction Cells, and the
network is constructed by stacking these cells sequentially
[44]. This modular design provides flexibility to adapt to
different task requirements and hardware constraints.
Moreover, as NASNetMobile is pre-trained on large-scale
datasets such as ImageNet, it is capable of effectively
learning complex visual features [45].

2.4. Performance Evaluation Metrics

In this subsection, the primary evaluation metrics used
to objectively compare the classification performance of
the proposed models are defined. This approach enables a
fair comparison of the algorithms without prioritizing any
specific application domain [46].

(tp+tn+fp+ fn)

Metric Formula Description
It is defined as the ratio of correctly classified positive
. tp samples to the total number of samples predicted as
Precision tp + fp x100% positili/e [47, 48]. This metric is alsoprefelr)red to as the
Positive Predictive Value.
(tp + tn) Accuracy is defined as the ratio of correctly classified
Accuracy x100% samples to the total number of sample [47], reflecting the

overall classification performance of the model [49, 50].

tp

x100%
tp+ fn

Recall / Sensivity

It represents the true positive rate, indicating the proportion
of correctly identified positive samples among all actual
positive samples [51].

2 * Precision * Sensivity

The F-measure is an evaluation metric defined as the

W= tp; + fny
' Z?’:l(tpj + fn;)

F1-Score Precision + Sensivity x100% harmonic mean of Precision and Recall [52].
1 N 2 « Precision; * Recall, This metric computes the F'l -score independently for each
Macro avg — — label and then takes the arithmetic mean of these scores,
N = Precision; + Recall; assigning equal weight to all classes [53].
Similar to the macro F1-score, this metric computes the F1
value separately for each class; however, when averaging
these values, it assigns weights based on the number of true
L Precision; * Recall; samples (support) associated with each class. Here,
Z Wi Precision, + Recall. w;denotes the proportion of true samples belonging to class
Weighted avg i=1 ¢ ¢ irelative to the total number of samples [53]. The weighted

F1-score incorporates the support (weight) of each class
through w;, where tp;and fn;represent the true positive
and false negative samples of class i, respectively, and the
denominator corresponds to the sum of true positive and
false negative samples across all classes [53].
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Table 5 summarizes the primary performance metrics
used to evaluate the classification performance of the
models, along with their mathematical formulations.
Precision, Recall, Accuracy, and Fl-score are derived
from the components of the confusion matrix (TP, TN, FP,
FN), enabling a comprehensive assessment of the model’s
ability to correctly identify positive classes, its overall
accuracy, and its classification performance even in the
presence of class imbalance.

Table 6. Confusion matrix representation for binary classes [54,
55].

Predicted
Positive Negative
Ct C
True positive False negative
. (tp) (fn)
Poz&lve The number of Number of false
positive predicted negative
positive values. estimates.
Actual False positive True (r;fl;)gatlve
Negative (p) The number of
- The number of
C . correctly
false positive ; .
; predicted negative
estimates.
values.

Table 6 presents the structure and components of the
confusion matrix used to evaluate model performance in
binary classification problems. The matrix consists of True
Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) values, from which classification
performance metrics are derived. With true class labels on
one axis and predicted class labels on the other, the
confusion matrix enables a detailed analysis of the types
of errors made by the model in a binary classification
setting [56].

1

- — —

TP Rate

0
p———

o FP Rate 1

Figure 4. ROC curve (blue dotted line) and the AUC area
(orange region) [57].

The ROC curve illustrates the variation of the model’s
sensitivity with respect to specificity across different
decision thresholds. In this representation, sensitivity is
plotted along the y-axis, while specificity is shown on the
x-axis, with each point corresponding to the performance
pair obtained at a particular threshold. The ROC curve is
formed by connecting these points. The area under the
ROC curve, referred to as AUC, provides a quantitative

measure of the model’s discriminative capability. As the
AUC value approaches 1, the model’s ability to distinguish
between classes increases, whereas values approaching 0
indicate performance close to random classification.
Figure 4 presents the ROC curve of the model along with
the corresponding AUC area [57].

3. RESULTS AND DISCUSSION

In this section, the experimental results of the proposed
deep learning—based classification approach are presented.
An evaluation of the MobileNetV2, DenseNetl2l,
DenseNet169, DenseNet201, and NASNetMobile
architectures is conducted, and a comparison of the models
is made in terms of accuracy, sensitivity, specificity, F1-
score, and AUC. Furthermore, computational efficiency is
analyzed by considering the training time of each model.
The findings reveal discernible disparities in performance
among the architectures, with certain models attaining a

favorable equilibrium between high classification
accuracy and low computational expense.
Table 7. Results of Performance Evaluation
. Fl1- -
Accura | Precisi | Reca scor ROC | Traini
Model cy on 1 R / ng
(%) (%) (%) %) AUC | Time
MobileNetV2| 9958 9930 99.8 | 99.5 | 1.00 19'.7
7 8 00 min

100. | 97.8 | 1.00 244
DenseNet121
enseNel 97.85 95.88 00 5 00 min

100. | 99.1 1.00 27.0
DenseNet169
99.12 98.28 00 2 00 min

100. | 99.5 | 1.00 29.5
DenseNet201
99.56 99.13 00 6 00 min

NASNet 92.46 8771 98.7 | 924 | 0.99 28..5
Mobile 5 3 35 min

Table 7 presents a comprehensive comparison of the
classification performance of the five deep learning
architectures evaluated in this study. The findings indicate
substantial disparities in

the performance metrics,
including recall, Fl-score,
ROC/AUC, and training time, among the models under
consideration. MobileNetV2 demonstrated the highest
overall performance, with an accuracy of 99.58%,
indicating an effective balance between computational
efficiency and classification accuracy despite its
lightweight architecture, as evidenced by its high precision
(99.30%) and recall (99.87%). Among the DenseNet
variants, DenseNet169 and DenseNet201 demonstrated
robust performance, attaining high accuracy levels of
99.12% and 99.56%, respectively, along with perfect
recall 100%. DenseNetl21, while requiring a shorter
training time compared to the other DenseNet models,
yielded relatively accuracy and precision.
NASNetMobile demonstrated the weakest performance,
with an accuracy of 92.46% and an F1-score of 92.43%.
However, its relatively high recall value of 98.75%
indicates a strong tendency to correctly identify positive

accuracy, precision,

lower

samples.
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The analysis revealed that all models demonstrated
ROC/AUC values greater than 99%, suggesting a high
discriminative capability between the classes. With regard
to the duration of training, MobileNetV2 demonstrated the
most efficient use of time, underscoring its efficacy in
terms of computational efficiency.
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Figure 5. Confusion Matrix of the DenseNet121 model

Figure 5 shows the classification performance of the
DenseNet121 model on the test dataset. The model
accurately classified all 2400 samples in the Real category
(2400/2400); however, it correctly identified only 2297
samples in the AI category, resulting in
103 misclassifications. The model performs very well in
recognizing real images. However, it makes some errors

when distinguishing synthetic images.

Table 8. Evaluation metrics of the DenseNet121 model

Class / Metric Precision (%) Recall (%) Fl-score (%)
Al 100.00 96.00 98.00
Real 96.00 100.00 98.00
Accuracy - - 98.00
Macro avg 98.00 98.00 98.00
Weighted avg 98.00 98.00 98.00

Table 8 shows the main classification success indicators
for distinguishing between the Real and Al classes using
the DenseNet121 model. The precision and recall scores
are 100% and 96%, respectively, for the Al class, and 96%
and 100%, respectively, for the Real class. Each class has
an F1 score of 98%. Overall, the model is accurate 98% of
the time, and both the macro-averaged and the weighted-
averaged measures show the same result. This indicates
that the model performs impressively across all classes.

10
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False Positive Rate

Figure 6. ROC curve and AUC value of the DenseNet121
model

Figure 6 shows that the DenseNetl21 model can
effectively distinguish between Al-generated and real
samples in the test dataset. This is evident from its ROC
AUC value of 1.0000.
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Figure 7. Confusion Matrix of the DenseNet169 model

As illustrated in Figure 7, the DenseNet169 model
demonstrates a high degree of classification performance
on the test dataset. The model exhibited an accuracy of
100% in its classification of all samples in the Real class,
while generating 2.358 accurate predictions and 42
erroneous predictions for the Al class. The findings
suggest that the model exhibits a high degree of accuracy
in differentiating between authentic images and synthetic
ones.

Table 9. Performance evaluation metrics of the DenseNet169

Class / Metric Precision (%) Recall (%) Fl-score (%)
Al 100.00 98.00 99.00
Real 98.00 100.00 99.00
Accuracy - - 99.00
Macro avg 99.00 99.00 99.00
Weighted avg 99.00 99.00 99.00

As illustrated in Table 9, the DenseNet169 model
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demonstrates a high level of accuracy in its classification
of data, with metrics indicating optimal performance for
both the AI and Real classes. The precision and recall
values for the Al class are 100% and 98%, respectively,
while for the Real class, precision reaches 98% and recall
reaches 100%. The F1 score was observed to be 99%
for both classes. Both the macro-average and weighted-
average metrics reached 99%, indicating a highly
consistent and balanced performance between the two
classes.

1.0

0.8 1

e
o
!

True Positive Rate
o
B

0.2 4

—— ROC (AUC = 1.000)

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 8. ROC curve and AUC value of the DenseNet169
model

As demonstrated in Figure 8, the ROC/AUC value of
1.0000 indicates that the DenseNet169 model exhibits an
exceptionally high discriminatory capacity between

artificial intelligence (Al)-generated and authentic
samples in the test dataset.
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Figure 9. Confusion Matrix of the DenseNet201 model

As demonstrated in Figure 9, the DenseNet201
model yielded 2,379 accurate predictions and 21
erroneous ones for the Al class on the test dataset. These
findings suggest that the model attains high accuracy in
distinguishing real images and exhibits strong
selectivity in detecting

synthetic images.

Table 10. Performance evaluation metrics of the DenseNet201

Class / Metric Precision (%) Recall (%) Fl-score (%)
Al 100.00 99.00 100.00
Real 99.00 100.00 100.00
Accuracy - - 100.00
Macro avg 100.00 100.00 100.00
Weighted avg 100.00 100.00 100.00

Table 10 presents the classification performance metrics
of the DenseNet201 model. For the Al class, the precision
and recall values are 100% and 99%, respectively, while
for the Real class, the precision is 99% and the recall is
100%. The F1-score is calculated as 100% for both classes.
The model demonstrated an overall accuracy of 100%,
with both macro-averaged and weighted-averaged metrics
also exhibiting values of 100%.
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Figure 10. ROC curve and AUC value of the DenseNet201
model

As illustrated in Figure 10, the ROC curve of the
DenseNet201 model on the test dataset demonstrates the
model's performance. The area under the curve is
calculated as 1.000 based on the relationship between the
true positive rate and the false positive rate.
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Figure 11. Confusion Matrix of the MobileNetV2 model

As illustrated in Figure 11, the MobileNetV2 model's
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classification performance on
evident. The model yielded 2,383 accurate predictions
and 17 erroneous predictions for the Al class, and 2,397
accurate predictions and 3 erroneous predictions for the

Real class.

the

test

dataset is

Table 11. Performance evaluation metrics of the MobileNetV2

Figure 13. Confusion Matrix of the NASNetMobile model

Figure 13 shows the classification results of the
NASNetMobile model on the test dataset. The
model produced 2,068 correct and 332 incorrect
predictions for the Al class, and 2,370 correct and 30
incorrect predictions for the Real class.

Table 12. Performance evaluation metrics of the
NASNetMobile model

Class / Metric Precision (%) Recall (%) Fl-score (%)
Al 100.00 99.00 100.00
Real 99.00 100.00 100.00
Accuracy - - 100.00
Macro avg 100.00 100.00 100.00
Weighted avg 100.00 100.00 100.00

Table 11 presents the classification performance metrics
of artificial intelligence (AI) and real images using the
MobileNetV2 model. For both classes, sensitivity,
recall, and Fl-score values 100%, while overall
accuracy was calculated as 100%. Both the macro-
average and weighted-average metrics reached 100%,
indicating a highly consistent and balanced performance
between the two classes.
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Figure 12. ROC curve and AUC value of the MobileNetV2
model

Figure 12 presents the ROC curve of the MobileNetV2
model on the test dataset. The area under the curve is
calculated as 1.000, based on the relationship between the
true positive rate and the false positive rate.

2000

1500

True Label

- 1000

500

Predicted Label

Class / Metric Precision (%) Recall (%) Fl-score (%)
Al 99.00 86.00 92.00
Real 88.00 99.00 93.00
Accuracy - - 92.00
Macro avg 92.00 92.00 92.00
Weighted avg 92.00 92.00 92.00

Table 12 presents the classification performance metrics
of the NASNetMobile model for the Al and Real classes.
For the Al class, the precision and recall values are 99%
and 86%, respectively, while for the Real class, the
precision is 88% and the recall is 99%. The corresponding
Fl-scores are 92% for the Al class and 93% for the Real
class. Both macro-averaged and weighted - averaged
metrics are 92%.
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Figure 14. ROC curve and AUC value of the NASNetMobile
model

Figure 14 presents the ROC curve of the
NASNetMobile model on the test dataset. The area under
the curve is calculated as 0.994 based on the relationship
between the true positive rate and the false positive rate.

According to Table 7, MobileNetV2 (99.58%) and
DenseNet201 (99.56%) achieved the highest success rates;
DenseNet169 also produced a similarly strong
performance. These results show that success in tasks such
as real - synthetic discrimination is influenced not only by
overall accuracy but also by representational power,
particularly the ability to capture subtle texture/artifact
clues. In DenseNet architectures, dense inter - layer
connections enable more effective transfer of low-level
texture and edge cues learned in early layers to deeper
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layers, potentially providing an advantage in
distinguishing diffusion-induced micro-inconsistencies.
MobileNetV2's ability to achieve similar accuracy with
shorter training time demonstrates that lightweight models
can also be highly competitive in this task with the right
architectural design.

In contrast, NASNetMobile's lower performance
92.46% can be attributed more to task suitability
than to the architecture's representational capacity.
NASNetMobile is designed with architecture search to
optimize semantic discrimination, mostly for general-
purpose  classification. = However,  synthetic—real
discrimination requires sensitivity to high-frequency
texture cues and small artifacts, independent of class
semantics. The cell-based and more selective feature
summarization structure in NASNetMobile may have led
to the suppression of these weak signals in some cases and
resulted in more errors, particularly in the synthetic class.
Indeed, despite NASNetMobile's relatively high recall, its
lower accuracy / F1 score suggests that the model has an
increased tendency for false positives/misclassification in
some synthetic examples and that the decision boundary
remains more unstable.

In conclusion, the findings show that the DenseNet
family and MobileNetV2 provide more appropriate
representation in real-synthetic discrimination, while
NASNetMobile cannot provide the same level of fine-
grained artifact sensitivity required for this task.
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Figure 15. Training loss and accuracy curves of the
DenseNet121 model

As illustrated in Figure 15, the training and validation
loss and accuracy curves of the DenseNet121 model are
presented. As illustrated by the loss curves, the
behavior across epochs is evident.
Concurrently, the accuracy curves demonstrate the
progression of training and validation accuracy during the
training process.
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Figure 16. Training loss and accuracy curves of the
DenseNet169 model

As illustrated in Figure 16, the training and validation
loss and accuracy curves of the DenseNet169 model are

presented. The loss curves demonstrate the convergence
behavior over epochs, while the accuracy curves illustrate
the evolution of training and validation accuracy
throughout the training process.

Model Loss Mogel Accuracy

DT

Figure 17. Training loss and accuracy curves of the
DenseNet201 model

As illustrated in Figure 17, the training and validation
loss and accuracy curves of the DenseNet201 model are
presented. The loss curves demonstrate the convergence
pattern across epochs, while the accuracy curves illustrate
the progression of training and validation accuracy during
the training process.
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Figure 18. Training loss and accuracy curves of the
MobileNetV2 model

As illustrated in Figure 18, the training and validation
loss and accuracy curves of the MobileNetV2 model are
presented. The loss curves demonstrate the convergence
behavior over the periods, while the accuracy curves
illustrate the enhancement of training and validation
accuracy throughout the training process. In contrast to
other DenseNet models, the MobileNetV2 model
exhibited a more consistent loss and validation curve. The
fluctuations in loss experienced during training periods are
conspicuously diminished.
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Figure 19. Training loss and accuracy curves of the
NASNetMobile model

Figure 19 shows the training and validation loss and
accuracy curves of the NASNetMobile model. The curves
show the behavior of loss and accuracy values for both
training and validation sets throughout the training
process. The NASNetMobile model exhibited a lower
validation accuracy curve during training while showing
higher validation loss compared to the other four models.
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This can be explained as follows: NASNetMobile's cell-
based architecture and relatively complex search-space
design may not be able to represent high-frequency cues
critical for discrimination in binary classification problems
focused on “fine texture/artifacts,” such as real-synthetic
discrimination, in a sufficiently stable manner. Therefore,
even if the model predicts the correct class in some
examples, it may produce more “uncertain” predictions by
generating low probability margins in its outputs. This
behavior is consistent with the high loss value in the
validation set, as cross-entropy loss penalizes not only
correct/incorrect decisions but also the confidence level
(calibration) of the decision. Furthermore, the relatively
low F1/accuracy values reported for NASNetMobile in the
previous section support this weak generalization behavior
observed in the curves.

When other architectures are examined, a more stable
and consistent learning dynamic is noticeable. The steady
decrease in training and validation loss in the
DenseNet121/169/201 models and the close tracking of
accuracy curves indicate that the learned representations
better align with the data distribution. The dense
connectivity structure of the DenseNet family enables the
effective transfer of low-level features, such as edge-
texture, learned in early layers to deep layers, potentially
providing an advantage in distinguishing micro-
inconsistencies arising from diffusion-based generation. In
particular, DenseNet201's performance, which approaches
the lowest error rate, indicates that higher representation
capacity can be beneficial in this task; however, an
increase in training time is an expected result.

On the MobileNetV2 side, it is seen that the curves
converge faster and the validation performance remains
high despite the shorter training time. This finding shows
that MobileNetV2, thanks to inverted residuals and depth-
separable convolutions, is both computationally efficient
and able to learn sufficient discriminative features in this
binary classification problem. In conclusion, training
curve analysis reveals that the DenseNet family stands out
with its high representational power, MobileNetV2 with its
efficiency-performance balance, and NASNetMobile with
its inability to produce the fine-grained artifact sensitivity
and stable generalization behavior required for this
problem to the same extent.

4. CONCLUSIONS

The present study developed a deep learning-based
classification framework to distinguish Al-generated
images from real images. The study also comprehensively
evaluated the performance of various CNN architectures.
MobileNetV2, DenseNet121, DenseNet169,
DenseNet201, and NASNetMobile were subjected to a
rigorous evaluation process that utilized key classification
metrics, including accuracy, sensitivity, recall, F1 score,

and ROC/AUC. This evaluation also incorporated the
analysis of confusion matrices and training curves.
As illustrated in Table 7, MobileNetV2 99.58%
and DenseNet201 99.56% demonstrated the highest
overall accuracy, while NASNetMobile 92.46%
exhibited a substantial decline in performance compared
to the other models. The attainment of a 100% recall
rate by all DenseNet models serves to substantiate
their remarkable sensitivity in identifying Al-generated
images.

An analysis of the confusion matrices indicates that the
DenseNet family attains perfect classification for the
Real class and generates a minimal number of errors in
the Al class. Among the evaluated models, DenseNet201
showed low error rates compared to other DenseNet
models, misclassifying only 21 examples, while
MobileNetV2 showed the lowest error rates,
misclassifying 17 examples in the AI class and
3examples in the Real class. The high rate of false
positives observed for NASNetMobile, in which Al-
generated 1images were erroneously classified as
authentic, signifies challenges in accurately representing
the variability of synthetic image patterns.

Training demonstrate  that  DenseNet
models demonstrate rapid convergence; However,
transient variations in validation loss are observed around
the 15th epoch. This phenomenon suggests a transient
instability in the system's capacity to adapt to complex
data patterns. MobileNetV2
variations  in validation loss; Nevertheless, stability
in subsequent epochs signifies the emergence of
robust generalization capabilities. The observed rising
validation loss trend for NASNetMobile points to a
precursor trend toward overfitting and limited
generalization capabilities in complex patterns.

A comparison of the models utilization in this research
with those documented in the extant literature reveals
their superior performance in comparable classification
tasks. This enhancement can be attributed to the

curves

demonstrates  notable

efficacy of hyperparameter optimization and the
utilization of a high-quality, task specific dataset.
Moreover, by incorporating training times alongside
classification accuracy, the proposed methodology
addresses a substantial gap in the extended literature
with respect to both performance and computational

efficiency.

This work corroborates earlier findings
that conventional detection methods are inadequate
when confronted with —more realistic images
generated by contemporary  generative  models,

including GANs and diffusion-based techniques. The
paper makes a substantial
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contribution to the field by offering a comprehensive
evaluation of various CNN architectures for Al-generated
image detection. Future research endeavors should focus
on incorporating multimodal features, investigating Vision
Transformer-based  architectures, and examining
generative model fingerprints to enhance detection
efficiency.
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