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This study aims to develop a convolutional neural network based classification framework that 

can distinguish between synthetic and real animal images generated by the Stable Diffusion 

Turbo model. Additionally, this study will evaluate the performance of different network 

architectures for this task. The study employed a balanced dataset of 31,995 images, including 

16,000 real images and 15,995 synthetic images generated by Stable Diffusion Turbo. The dataset 

includes eight animal categories: dogs, cats, cows, rabbits, horses, sheep, chickens, and elephants. 

All images were resized to 224 by 224 pixels, and standard preprocessing techniques were applied. 

During the classification stage, five pretrained convolutional neural network architectures were 

retrained using transfer learning, including MobileNetV2, DenseNet121, DenseNet169, 

DenseNet201, and NASNetMobile. Model performance was evaluated using accuracy, precision, 

recall, the F1 score, the area under the curve of the receiver operating characteristic, confusion 

matrices, and training time. The experimental results demonstrate that MobileNetV2 and 

DenseNet201 achieved the highest classification performance, with respective accuracy rates of 

99.58% and 99.56%, and perfect area under the curve values. All DenseNet variants exhibited 

complete sensitivity in detecting synthetic images, whereas NASNetMobile showed substantially 

lower performance compared to the other models. These results suggest that synthetic images 

produced by diffusion-based generative models can be reliably identified when appropriately 

designed CNN architectures and balanced datasets are used. This provides a significant 

methodological contribution to the discrimination of synthetic versus real images, the detection of 

fake content, and the verification of visual authenticity. 

This is an open access article under the 
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(https://creativecommons.org/licenses/by-
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1. INTRODUCTION

In recent years, advancements in technology have led to

significant improvements in the efficiency and speed of 

visual content production. This complicates the 

discernment of the distinction between authentic 

photographs and those produced by artificial intelligence. 

This is particularly salient in the context of deep generative 

models, which have the capacity to generate visual content 

that exhibits a high degree of realism. In 2014, Goodfellow 

et al. developed Generative Adversarial Networks 

(GANs), which represented a significant milestone in the 

field of deep learning-based image production. GANs 

employ an adversarial learning paradigm, whereby two 

networks are trained concurrently. One network generates 

synthetic images, while the other network is tasked with 

differentiating between authentic and fabricated images. 

This adversarial training has contributed to the remarkable 

success and immediate popularity of GANs in the domain 

of computer vision [1]. In recent years, there has been a 

proliferation of variants of GANs developed with the 

objective of producing high-quality and photorealistic 

images [2]. 

The utilization of artificial image production can prove 

to be highly advantageous in a multitude of scenarios. 

However, it is imperative to acknowledge the potential 

risks associated with this practice, particularly in contexts 

pertaining to security, reliability, and ethical 

considerations. In the medical field, for instance, 

Generative Adversarial Networks (GANs) are employed to 

generate synthetic images, thereby enhancing the efficacy 

of Convolutional Neural Network (CNN) models. This 

approach is instrumental in addressing the challenge of 

insufficient data [3, 4]. In a similar vein, artificial image 

generation has been extensively utilized across a range of 

disciplines, including agriculture [5, 6], cybersecurity [7], 
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vehicle and intelligent transportation systems [8]. 

However, diffusion-based generative models have 

recently emerged as a compelling alternative to GANs. 

This is due to the fact that they are easier to train, produce 

superior images, and exhibit greater diversity. Denoising 

Diffusion Probabilistic Models (DDPMs) established the 

foundational framework for the field by conceptualizing 

image production as a progressive denoising process. 

Subsequently, Latent Diffusion Models (LDMs) emerged 

as a more affordable solution by operating within lower-

dimensional latent spaces. A significant number of 

individuals employ Stable Diffusion, an open-source 

LDM, due to its user-friendly interface and its ability to 

generate high-quality images from text-based prompts  [9]. 

The present study examines the effectiveness of 

convolutional neural network (CNN)–based models in 

discriminating authentic images from synthetic images 

generated by Stable Diffusion Turbo (SD Turbo), a 

diffusion-based generative model designed to accelerate 

the sampling process of conventional diffusion 

frameworks. To this end, a balanced dataset consisting of 

16,000 real images and 15,995 synthetic images generated 

by SD Turbo was constructed and utilized for the 

classification task. The experimental work utilizes transfer 

learning to enhance numerous pre-trained CNN 

architectures, including NASNetMobile, MobileNetV2, 

DenseNet121, DenseNet169, and DenseNet201. Each 

design's capacity to differentiate between authentic images 

and those generated by diffusion was meticulously 

evaluated. 

In this context, with the increasing prevalence of 

diffusion-based production models, current approaches in 

the literature aimed at reliably distinguishing between 

synthetic and real images have been examined. 

Lokner Lađević et al. (2024), stressed that figuring out 

how to tell the difference between AI-generated 

photographs and actual ones has been an important 

research challenge in the last several years. They said that 

existing ways of finding false images, which mostly 

depend on hand-crafted features, are becoming less and 

less useful as GAN-based picture-generating algorithms 

evolve more complicated. In this situation, the authors 

suggested a simple CNN design with eight convolutional 

layers and two fully connected layers. The suggested 

model was thoroughly tested on two conventional 

benchmark datasets and a new dataset made from Sentinel-

2 satellite photos. The suggested architecture attained an 

accuracy of 97.32% on the CIFAKE dataset, surpassing or 

matching the performance of four leading methodologies 

[10]. 

Y. Patel et al. (2023) did a study that showed many of

the current deepfake spotting algorithms are not good at 

finding differences between frames in movies or pictures. 

The writers showed a better deep convolutional neural 

network (D-CNN) architecture to get around this problem. 

The trial test used a total of 15,000 photos, with 10,000 

real photos and 5,000 deepfake photos from seven 

different datasets under the Reconstruction Challenge 

framework. It was found that the suggested D-CNN 

worked very well with a number of GAN-based creation 

methods. StarGAN got it right 99.17% of the time, 

AttGAN got it right 95.33% of the time, GDWCT got it 

right 94.67% of the time, and StyleGAN got it right 

94.67% of the time. It turns out that the suggested way not 

only finds things well, but it also works well with many 

different GAN sources [11]. 

Bird and Lotfi (2024) created a new real–synthetic 

dataset called CIFAKE by using a latent diffusion method 

to make synthetic pictures that look like the CIFAR-10 

structure. A total of 36 different CNN designs were tested 

on this dataset. The model that did the best got an accuracy 

rate of 92.98%. Grad-CAM analyses showed that the 

decisions about how to classify things were mostly based 

on small visual differences in the background, not on what 

the items meant. The study gives researchers working on 

synthetic picture detection a clear and easy-to-understand 

standard to use [12]. 

Mallet et al. (2023) emphasized the risks of 

misinformation stemming from the widespread 

dissemination of deepfake content on social media and 

devised a hybrid CNN–SVM approach for identifying 

deepfake photos. The study employed the publicly 

available 140k Real and Fake Faces dataset, and the 

proposed model achieved a classification accuracy of 

88.33% in identifying deepfake images. The findings 

indicate that hybrid machine learning techniques offer a 

viable and effective approach for deepfake detection tasks. 

[13]. 

Raza et al. (2022) suggested that deepfake content poses 

a significant hacking threat, potentially resulting in 

identity theft, extortion, and misinformation. They 

proposed an innovative method for detecting deepfakes 

with deep learning techniques. They utilized a dataset 

comprising authentic and fabricated facial photos to 

develop a Deepfake Predictor (DFP) model that integrates 

VGG16 with a CNN architecture. Advanced transfer 

learning models such as Xception, NASNet, and 

MobileNet were employed to evaluate the proposed DFP. 

It outperformed these models, with an accuracy of 94% 

and a precision of 95%. The findings indicate that the 

proposed method is effective for detecting deepfakes in 

digital forensic applications [14]. 

Abir et al. (2023), talked about how deepfake content is 

having a bigger effect on society and looked at how well 

and how easy it is to find deepfake content. Four CNN 

designs were looked at in the study: InceptionV3, 

DenseNet201, ResNet152V2, and InceptionResNetV2. It 

used a large dataset from Kaggle that included 70,000 real 

pictures (Flickr–NVIDIA) and 70,000 256x256-pixel fake 

photos made by StyleGAN. The three models all did a 
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great job of putting facts in order. With a rate of 99.81%, 

DenseNet201 was the most correct. With a score of 

99.68%, InceptionV3 came in second. Third place went to 

ResNet152V2, which got it right 99.19% of the time. 

There was one model that was right 99.87% of the time, 

and that was InceptionResNetV2. LIME-based 

explainability analysis showed that it could make smart 

decisions. The results show that combining deep learning 

and explainable AI (XAI) might be the best way to find 

deepfake pictures that can be trusted [15]. 

Chen et al. (2025) treat diffusion models as a 

probabilistic framework based on forward noise reduction 

and reverse denoising processes in image production. They 

systematically compare three major formulations from the 

literature: DDPM, score-based models, and the 

continuous-time approach based on SDEs that combines 

them. The authors also discuss guidance strategies for 

conditional production and acceleration methods to 

improve sampling efficiency and stability. Additionally, 

they address the socio-ethical impacts of diffusion-based 

production, including privacy, copyright, bias, and abuse 

[16]. 

Rahat et al. (2025) propose Automated Generative 

Augmentation (AGA), a framework that reduces data 

scarcity in fine-grained image classification. AGA 

produces richer training data by segmenting and 

preserving the subject (foreground), while increasing 

background diversity through large language model 

(LLM)-based prompt diversification and diffusion-based 

synthesis. It also applies controlled manipulation to the 

subject using affine transformations. Evaluations on 

ImageNet, CUB, and iWildCam showed that AGA 

improved in-distribution accuracy by 15.6%, out-of-

distribution accuracy by 23.5%, and SIC score by 64.3% 

compared to basic approaches. Grad-CAM analyses 

showed that the model's attention was more consistently 

directed to the target subject regions. However, subject-

background context mismatches led to visual 

inconsistencies in some examples, revealing room for 

improvement in terms of contextual suitability [17]. 

Siddiqui et al. (2025) propose a hybrid detection 

approach combining DenseNet121-based local feature 

extraction and global contextual modeling capabilities via 

Cross-ViT. This approach addresses the growing security 

risks posed by increasingly persuasive face-focused 

deepfakes. The study aims to achieve competitive 

performance without complex strategies like distillation or 

ensemble, utilizing a voting-based inference mechanism to 

improve decision stability when multiple faces are present 

in a single frame. Experiments showed that the method 

achieved an area under the curve (AUC) of 99.99% and an 

average F1 score of 99.0% in DeepForensics 1.0 and an 

AUC of 97.4% and an F1 score of 95.1% in CelebDF. 

However, generalization to unknown fake samples is noted 

as an area that needs improvement in the future with richer 

feature representation [18]. 

Banerjee (2025) proposes a neural architecture search 

(NAS)-based deep learning model to improve the accuracy 

of deepfake detection. The model enhances the quality of 

the input by performing face and related region 

segmentation with YOLOv8 during the preprocessing 

phase. It also expands the diversity of the sample through 

data augmentation. For the study, frames were extracted 

from 100 real and 100 deepfake videos selected from the 

CelebDF v2 dataset. Then, a training set consisting of 

2,000 real and 2,000 deepfake images was created after 

augmentation. The proposed approach achieved 99.04% 

accuracy in testing. With high precision, recall, and F1 

values, the model demonstrated its ability to reduce false 

positives while effectively detecting real deepfake 

samples. The comparative analysis reported that the 

scenario using YOLOv8-based face extraction and 

augmentation yielded significantly better results than the 

scenario without segmentation or augmentation. This 

conclusion suggests that these two components 

significantly strengthen deepfake classification [19]. 

A comprehensive assessment of these studies indicates 

that, although existing methods yield strong performance, 

they still exhibit notable limitations when confronted with 

diverse data sources, emerging generative models, and 

large-scale real–synthetic image distributions. 

Consequently, a systematic comparison of models from 

different architectural families such as DenseNet, 

MobileNet, and NASNet for the classification of real and 

AI-generated images is essential, both to better understand 

performance variations and to develop more reliable and 

lightweight detection systems suitable for practical 

applications. By addressing this gap in the literature, the 

present study aims to provide a thorough evaluation of 

modern CNN architectures on a large-scale dataset and to 

offer a more comprehensive, up-to-date, and practically 

applicable framework for synthetic image detection.  

The remainder of this paper is organized as follows. As 

delineated in Section 2, the characteristics of the dataset 

are described, along with the CNN architectures employed 

and the data preprocessing and enhancement procedures. 

The third section of the text presents the experimental 

results and discusses them through analysis. The final 

section of the study presents the summary of the results 

and potential future research directions. 

2. MATERIAL AND METHODS

In this section, the dataset forming the experimental

design of the study, the preprocessing steps, the structural 

components of the deep learning models, the training 

protocol, and the performance evaluation metrics are 

presented in detail. Figure 1 presents the workflow 

diagram of the proposed methodology. 
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Figure 1. Workflow Diagram 

2.1. Dataset and Preprocessing 

The dataset used in this study consists of a total of 

31,995 images and comprises two primary classes: real 

and artificially generated (AI) images. The real image 

class includes 16,000 natural animal photographs, while 

the artificial image class consists of 15,995 synthetic 

animal images generated using the Stable Diffusion Turbo 

(SD-Turbo) model. The animal images in the dataset cover 

eight distinct categories: dog, cat, cow, rabbit, horse, 

sheep, chicken, and elephant. The number of images in 

both classes was kept balanced to prevent the model from 

developing bias due to class imbalance. During the 

preprocessing stage, all images were resized to a resolution 

of 224×224 pixels to ensure compatibility with the selected 

model architectures, and pixel values were normalized 

accordingly. 

Table 1. Class distribution of the dataset 

Class 
Training 

Set 

Validation 

Set 
Test Set Total 

AI 11196 2399 2400 15995 

Real 11200 2400 2400 16000 

Total 22396 4799 4800 31995 

Table 1 presents the quantitative distribution of the 

dataset used in this study across the training, validation, 

and test sets for the artificial (AI) and real (Real) classes. 

The dataset consists of a total of 31,995 images, with the 

number of samples kept balanced between the two classes. 

Specifically, the AI class contains 15,995 images, while 

the Real class includes 16,000 images. The training set 

comprises 22,396 images, whereas the validation and test 

sets contain 4,799 and 4,800 images, respectively. This 

balanced distribution ensures that the model is trained and 

evaluated without developing class-related bias.  

Figure 2. Representative examples of synthetic images 
belonging to the AI class in the dataset 

Figure 2 shows representative examples selected from 

the AI-generated image dataset. The images illustrate the 

synthetic data distribution and the intra-class diversity 

used during model training. 

Figure 3. Representative examples of real images belonging to 
the Real class in the dataset 

Figure 3 shows representative examples selected from 

the real image dataset. These images reflect the natural 

data distribution and illustrate the intra-class diversity used 

during model training. 

2.2. Experimental Setup and Training Parameters 

In this section, the experimental environment in which 

the deep learning–based classification studies were 

conducted is described in detail. In addition to the 

hardware and software infrastructure used during model 

training and evaluation, the core libraries employed and 

the hyperparameter configurations of the network 

architectures are systematically presented. 

Table 2. Hardware and software components used in the 
experimental study environment 

Component Description

Processor (CPU)
Intel Xeon processor with 12 

cores

Memory (RAM) 167 GB

Graphics Processing Unit (GPU) NVIDIA A100-SXM4-80GB

Software Frameworks CUDA 12.5.82, PyTorch 2.8.0

Table 2 summarizes the hardware and software 

components used in the experimental studies. The training 

processes were conducted on a high-capacity system 
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equipped with a 12-core Intel Xeon processor and 167 GB 

of RAM. The NVIDIA A100-SXM4-80GB GPU, with its 

high parallel processing capability and large memory 

capacity, significantly reduced the computational cost of 

the deep learning models. The software environment was 

built on CUDA 12.5.82 and PyTorch 2.8.0, enabling 

efficient and stable training through GPU-accelerated 

computations. 

Table 3. Library information in the experimental study 
environment 

Library Version 

NumPy 2.0.2 

Pandas 2.2.2 

Scikit-learn 1.6.1 

Matplotlib 3.10.0 

Table 3 lists the experimental study's primary Python 

libraries and their versions. NumPy (v2.0.2) and Pandas 

(v2.2.2) offer basic data and math capabilities. Scikit-learn 

(v1.6.1) helped us calculate model evaluation measures 

and other machine learning tasks. We plotted training-

related losses, accuracy, and performance indicators 

using Matplotlib (v3.10.0). Using up-to-date libraries 
helps keep the experimental setup stable and 
reproducible. 

Table 4. Hyperparameter Configuration of the Employed Models 

Hyperparameter Value Description

Batch Size 32

It represents the number of samples simultaneously fed into the model at each 

training iteration [20, 21]. This hyperparameter plays a critical role in 

determining memory requirements while also contributing to the stability of the 

optimization process [22].

Epochs Frozen 15

It refers to the number of epochs specified for the initial phase of transfer 

learning during which the pre-trained layers are frozen. This stage enables 

training exclusively of the newly added classification layers.

Epochs Ft 10

It denotes the number of additional training epochs performed after unfreezing 

the upper layers of the model during the fine-tuning stage. This process 

contributes to better adaptation of the model to the target dataset.

Unfreeze Last 30

It specifies the number of final layers that are unfrozen (made trainable) during 

the fine-tuning stage. This hyperparameter determines how much of the pre-

trained network is re-optimized.

Learning Rate Frozen 0.0001

It refers to the learning rate used during the initial training phase with frozen 

layers. This value is selected to enable rapid yet stable adaptation of the 

classification layers.

Learning Rate Ft 0.00001

It denotes the low learning rate applied during the fine-tuning stage, allowing 

for delicate parameter updates without disrupting the model’s previously 

learned representations.

Patıence Early Stopping 10

It represents the patience threshold of the early stopping mechanism used to 

terminate training when no improvement is observed in the validation loss [23]. 

This strategy is employed to prevent overfitting.

Patience Reduce LR 5

It specifies the number of epochs with no improvement in validation loss 

required to trigger the learning rate reduction mechanism. This parameter 

supports the optimization process when training reaches a plateau.

Random Seed 42

It represents the deterministic initialization value that ensures the 

reproducibility of data splitting, weight initialization, and other stochastic 

processes [24, 25]. This parameter is critical for maintaining experimental 

consistency.

Image Size 224 

It defines the input image size of the model. Prior to training, all images were 

resized to a resolution of 224×224 pixels to ensure compatibility with the 

standard input format required by the network architectures. 

Table 4 lists the basic hyperparameter parameters used 

during model training. The batch size was 32, and transfer 

learning was two-stage. First, the pre-trained layers were 

frozen and the models trained for 15 epochs. The final 30 

layers were unfrozen and fine-tuned for 10 epochs in the 

second step. Using 1×10⁻⁵ learning rates for each stage 

allowed for more controlled optimization. Early stopping 

(10 patience) and learning rate lowering (5 patience) 

reduced overfitting risk. All trials were replicated using a 

random seed value of 42 and a fixed model input size of 

224x224 pixels, as per CNN architecture specifications. 

2.3. Deep Learning Architectures 

Pre-trained CNN-based deep learning architectures 

were used to classify real photographs from fake ones in 

this study. Both lightweight designs for mobile and 

resource-limited contexts (MobileNetV2 and 

NASNetMobile) and more complicated architectures with 

densely connected frameworks (DenseNet121, 

DenseNet169, and DenseNet201) were retrained using 

transfer learning. The classification architectures' core 

structural and operational ideas are briefly covered in this 

section. 

2.3.1. MobileNetV2 

MobileNetV2 preserves the use of Depthwise Separable 

Convolutions (DSC) introduced in MobileNetV1, 

reducing the number of parameters and computational cost 

to approximately 18% compared to standard convolution 

operations [26, 27]. The model employs Linear Bottleneck 

layers and Inverted Residual blocks to mitigate the 



Akbas et al., Intelligent Methods in Engineering Sciences 4(3): 114-128, 2025 

- 119 -

information loss caused by ReLU activations in low-

dimensional feature spaces [28, 29]. In these blocks, the 

input is first expanded into a higher-dimensional space, 

then filtered through depthwise convolution, and 

subsequently projected back to a low-dimensional 

representation via a linear convolution. [26, 30, 31]. 

2.3.2. DenseNet121 

Huang et al. presented DenseNet, an architecture in 

which each layer in a dense block gets the feature maps 

from all the layers before it as input [29]. Thus, the ℓ-th 

layer operates on the concatenated feature maps from all 

earlier layers and processes them through a BN–ReLU–

Conv sequence [32, 33]. There are four dense blocks in the 

design, each separated by transition layers that do 1×1 

convolutions and 2×2 average pooling operations. After 

that, there is a fully connected layer with a softmax 

activation that gives the class probabilities [33-36]. 

2.3.3. DenseNet169 

DenseNet-169 starts with a convolutional and pooling 

layer, then has four dense blocks, each separated by a 

transition layer. It ends with a classification layer that has 

a softmax activation function [37]. Batch normalization 

(BN), Rectified Linear Unit (ReLU) activation, and 

convolution processes are all part of each convolutional 

layer [38]. In each dense block, there are 1×1 

convolutional layers followed by 3×3 convolutional 

layers. In DenseNet-169, there are four dense blocks, each 

with 6, 12, 32, and 32 pairs of 1×1–3×3 convolutional 

layers. This makes a total of 82 convolutional pairings 

[39]. 

2.3.4. DenseNet201 

DenseNet201 facilitates feature map reutilization by 

transmitting the output of each layer to all future layers in 

a feed-forward fashion, thus diminishing the parameter 

number and overall model complexity while enhancing 

computational efficiency [40]. The architecture consists of 

Dense Block structures where the spatial dimensions of 

feature maps are invariant inside each block, and 

Transition Layers between blocks that execute 

downsampling via batch normalization, 1×1 convolution, 

and 2×2 pooling operations [41]. 

2.3.5. NASNetMobile 

NASNetMobile is designed to be computationally 

efficient for mobile applications and autonomously 

generates a CNN architecture optimized for mobile 

devices using a neural architecture search (NAS) 

algorithm [42, 43]. The architecture consists of multiple 

convolutional layers with varying filter sizes, max-pooling 

layers that downsample feature maps, and skip 

connections that enhance information flow and mitigate 

the vanishing gradient problem. The core of 

NASNetMobile is formed by reusable and composable 

subnetworks known as Cells. These cells are categorized 

into two types: Normal Cells and Reduction Cells, and the 

network is constructed by stacking these cells sequentially 

[44]. This modular design provides flexibility to adapt to 

different task requirements and hardware constraints. 

Moreover, as NASNetMobile is pre-trained on large-scale 

datasets such as ImageNet, it is capable of effectively 

learning complex visual features [45]. 

2.4. Performance Evaluation Metrics 

In this subsection, the primary evaluation metrics used 

to objectively compare the classification performance of 

the proposed models are defined. This approach enables a 

fair comparison of the algorithms without prioritizing any 

specific application domain [46]. 

Table 5. Performance Metrics 

Metric Formula Description 

Precision 
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
𝑥100% 

It is defined as the ratio of correctly classified positive 

samples to the total number of samples predicted as 

positive [47, 48]. This metric is also referred to as the 

Positive Predictive Value. 

Accuracy 
(𝑡𝑝 + 𝑡𝑛)

(𝑡𝑝 + 𝑡𝑛 + 𝑓𝑝 + 𝑓𝑛)
𝑥100% 

Accuracy is defined as the ratio of correctly classified 

samples to the total number of sample [47], reflecting the 

overall classification performance of the model [49, 50]. 

Recall / Sensivity 
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
𝑥100% 

It represents the true positive rate, indicating the proportion 

of correctly identified positive samples among all actual 

positive samples [51]. 

F1-Score 
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑆𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑣𝑖𝑡𝑦
𝑥100% 

The F-measure is an evaluation metric defined as the 

harmonic mean of Precision and Recall [52]. 

Macro avg 
1

𝑁
∑

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 +𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑁

𝑖=1

This metric computes the F1-score independently for each 

label and then takes the arithmetic mean of these scores, 

assigning equal weight to all classes [53]. 

Weighted avg 

∑𝑤𝑖

2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 + 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑁

𝑖=1

𝑤𝑖 =
𝑡𝑝𝑖 + 𝑓𝑛𝑖

∑ (𝑡𝑝𝑗 + 𝑓𝑛𝑗)
𝑁
𝑗=1

Similar to the macro F1-score, this metric computes the F1 

value separately for each class; however, when averaging 

these values, it assigns weights based on the number of true 

samples (support) associated with each class. Here, 

𝑤𝑖denotes the proportion of true samples belonging to class 

𝑖relative to the total number of samples [53]. The weighted 

F1-score incorporates the support (weight) of each class 

through 𝑤𝑖, where 𝑡𝑝𝑖and 𝑓𝑛𝑖represent the true positive 

and false negative samples of class 𝑖, respectively, and the 

denominator corresponds to the sum of true positive and 

false negative samples across all classes [53]. 
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Table 5 summarizes the primary performance metrics 

used to evaluate the classification performance of the 

models, along with their mathematical formulations. 

Precision, Recall, Accuracy, and F1-score are derived 

from the components of the confusion matrix (TP, TN, FP, 

FN), enabling a comprehensive assessment of the model’s 

ability to correctly identify positive classes, its overall 

accuracy, and its classification performance even in the 

presence of class imbalance. 

Table 6. Confusion matrix representation for binary classes [54, 
55]. 

Predicted 

Positive 

C+ 

Negative 

C− 

Actual 

Positive 

C+ 

True positive 

(tp) 

The number of 

positive predicted 

positive values. 

False negative 

(fn) 

Number of false 

negative 

estimates. 

Negative 

C− 

False positive 

(fp) 

The number of 

false positive 

estimates. 

True negative 

(tn) 

The number of 

correctly 

predicted negative 

values. 

Table 6 presents the structure and components of the 

confusion matrix used to evaluate model performance in 

binary classification problems. The matrix consists of True 

Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN) values, from which classification 

performance metrics are derived. With true class labels on 

one axis and predicted class labels on the other, the 

confusion matrix enables a detailed analysis of the types 

of errors made by the model in a binary classification 

setting [56]. 

Figure 4. ROC curve (blue dotted line) and the AUC area 
(orange region) [57]. 

The ROC curve illustrates the variation of the model’s 

sensitivity with respect to specificity across different 

decision thresholds. In this representation, sensitivity is 

plotted along the y-axis, while specificity is shown on the 

x-axis, with each point corresponding to the performance 

pair obtained at a particular threshold. The ROC curve is 

formed by connecting these points. The area under the 

ROC curve, referred to as AUC, provides a quantitative 

measure of the model’s discriminative capability. As the 

AUC value approaches 1, the model’s ability to distinguish 

between classes increases, whereas values approaching 0 

indicate performance close to random classification. 

Figure 4 presents the ROC curve of the model along with 

the corresponding AUC area [57]. 

3. RESULTS AND DISCUSSION

In this section, the experimental results of the proposed

deep learning–based classification approach are presented. 

An evaluation of the MobileNetV2, DenseNet121, 

DenseNet169, DenseNet201, and NASNetMobile 

architectures is conducted, and a comparison of the models 

is made in terms of accuracy, sensitivity, specificity, F1-

score, and AUC. Furthermore, computational efficiency is 

analyzed by considering the training time of each model. 

The findings reveal discernible disparities in performance 

among the architectures, with certain models attaining a 

favorable equilibrium between high classification 

accuracy and low computational expense. 

Table 7. Results of Performance Evaluation 

Model 

Accura

cy 

(%) 

Precisi

on 

(%) 

Reca

ll 

(%) 

F1-

scor

e 

(%) 

ROC 

/ 

AUC 

Traini

ng 

Time 

MobileNetV2 99.58 99.30 
99.8

7 

99.5

8 

1.00

00 

19.7 

min 

DenseNet121 97.85 95.88 
100.

00 

97.8

5 

1.00

00 

24.4 

min 

DenseNet169 99.12 98.28 
100.

00 

99.1

2 

1.00

00 

27.0 

min 

DenseNet201 99.56 99.13 
100.

00 

99.5

6 

1.00

00 

29.5 

min 

NASNet

Mobile
92.46 87.71 

98.7

5 

92.4

3 

0.99

35 

28.5 

min 

Table 7 presents a comprehensive comparison of the 

classification performance of the five deep learning 

architectures evaluated in this study. The findings indicate 

substantial disparities in the performance metrics, 

including accuracy, precision, recall, F1-score, 

ROC/AUC, and training time, among the models under 

consideration. MobileNetV2 demonstrated the highest 

overall performance, with an accuracy of 99.58%, 

indicating an effective balance between computational 

efficiency and classification accuracy despite its 

lightweight architecture, as evidenced by its high precision 

(99.30%) and recall (99.87%). Among the DenseNet 

variants, DenseNet169 and DenseNet201 demonstrated 

robust performance, attaining high accuracy levels of 

99.12% and 99.56%, respectively, along with perfect 

recall 100%. DenseNet121, while requiring a shorter 

training time compared to the other DenseNet models, 

yielded relatively lower accuracy and precision. 

NASNetMobile demonstrated the weakest performance, 

with an accuracy of 92.46% and an F1-score of 92.43%. 

However, its relatively high recall value of 98.75% 

indicates a strong tendency to correctly identify positive 

samples. 
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The analysis revealed that all models demonstrated 

ROC/AUC values greater than 99%, suggesting a high 

discriminative capability between the classes. With regard 

to the duration of training, MobileNetV2 demonstrated the 

most efficient use of time, underscoring its efficacy in 

terms of computational efficiency. 

Figure 5. Confusion Matrix of the DenseNet121 model 

Figure 5 shows the classification performance of the 

DenseNet121 model on the test dataset. The model 

accurately classified all 2400 samples in the Real category 

(2400/2400); however, it correctly identified only 2297 

samples in the AI category, resulting in 

103 misclassifications. The model performs very well in 
recognizing real images. However, it makes some errors 
when distinguishing synthetic images.

Table 8. Evaluation metrics of the DenseNet121 model 

Class / Metric Precision (%) Recall (%) F1-score (%) 

AI 100.00 96.00 98.00 

Real 96.00 100.00 98.00 

Accuracy - - 98.00 

Macro avg 98.00 98.00 98.00 

Weighted avg 98.00 98.00 98.00 

Table 8 shows the main classification success indicators 

for distinguishing between the Real and AI classes using 

the DenseNet121 model. The precision and recall scores 

are 100% and 96%, respectively, for the AI class, and 96% 

and 100%, respectively, for the Real class. Each class has 

an F1 score of 98%. Overall, the model is accurate 98% of 

the time, and both the macro-averaged and the weighted-

averaged measures show the same result. This indicates 

that the model performs impressively across all classes. 

Figure 6. ROC curve and AUC value of the DenseNet121 
model 

Figure 6 shows that the DenseNet121 model can 

effectively distinguish between AI-generated and real 

samples in the test dataset. This is evident from its ROC 

AUC value of 1.0000. 

Figure 7. Confusion Matrix of the DenseNet169 model 

As illustrated in Figure 7, the DenseNet169 model 

demonstrates a high degree of classification performance 

on the test dataset. The model exhibited an accuracy of 

100% in its classification of all samples in the Real class, 

while generating 2.358 accurate predictions and 42 

erroneous predictions for the AI class. The findings 

suggest that the model exhibits a high degree of accuracy 

in differentiating between authentic images and synthetic 

ones. 

Table 9. Performance evaluation metrics of the DenseNet169 

Class / Metric Precision (%) Recall (%) F1-score (%) 

AI 100.00 98.00 99.00 

Real 98.00 100.00 99.00 

Accuracy - - 99.00 

Macro avg 99.00 99.00 99.00 

Weighted avg 99.00 99.00 99.00 

As illustrated in Table 9, the DenseNet169 model 
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demonstrates a high level of accuracy in its classification 

of data, with metrics indicating optimal performance for 

both the AI and Real classes. The precision and recall 

values for the AI class are 100% and 98%, respectively, 

while for the Real class, precision reaches 98% and recall 

reaches 100%. The F1 score was observed to be 99% 

for both classes. Both the macro-average and weighted-
average metrics reached 99%, indicating a highly 
consistent and balanced performance between the two 
classes.

Figure 8. ROC curve and AUC value of the DenseNet169 
model 

As demonstrated in Figure 8, the ROC/AUC value of 

1.0000 indicates that the DenseNet169 model exhibits an 

exceptionally high discriminatory capacity between 

artificial intelligence (AI)-generated and authentic 

samples in the test dataset. 

Figure 9. Confusion Matrix of the DenseNet201 model 

As demonstrated in Figure 9, the DenseNet201 

model yielded 2,379 accurate predictions and 21 
erroneous ones for the AI class on the test dataset. These 

findings suggest that the model attains high accuracy in 

distinguishing real images and exhibits strong 

selectivity in detecting 

synthetic images. 

Table 10. Performance evaluation metrics of the DenseNet201 

Class / Metric Precision (%) Recall (%) F1-score (%) 

AI 100.00 99.00 100.00 

Real 99.00 100.00 100.00 

Accuracy - - 100.00 

Macro avg 100.00 100.00 100.00 

Weighted avg 100.00 100.00 100.00 

Table 10 presents the classification performance metrics 

of the DenseNet201 model. For the AI class, the precision 

and recall values are 100% and 99%, respectively, while 

for the Real class, the precision is 99% and the recall is 

100%. The F1-score is calculated as 100% for both classes. 

The model demonstrated an overall accuracy of 100%, 

with both macro-averaged and weighted-averaged metrics 

also exhibiting values of 100%. 

Figure 10. ROC curve and AUC value of the DenseNet201 
model 

As illustrated in Figure 10, the ROC curve of the 

DenseNet201 model on the test dataset demonstrates the 

model's performance. The area under the curve is 

calculated as 1.000 based on the relationship between the 

true positive rate and the false positive rate. 

Figure 11. Confusion Matrix of the MobileNetV2 model 

As illustrated in Figure 11, the MobileNetV2 model's 
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classification performance on the test dataset is 

evident. The model yielded 2,383 accurate predictions

and 17 erroneous predictions for the AI class, and 2,397

accurate predictions and 3 erroneous predictions for the 

Real class.

Table 11. Performance evaluation metrics of the MobileNetV2 

Class / Metric Precision (%) Recall (%) F1-score (%) 

AI 100.00 99.00 100.00 

Real 99.00 100.00 100.00 

Accuracy - - 100.00 

Macro avg 100.00 100.00 100.00 

Weighted avg 100.00 100.00 100.00 

Table 11 presents the classification performance metrics 

of artificial intelligence (AI) and real images using the 

MobileNetV2 model. For both classes, sensitivity, 

recall, and F1-score values 100%, while overall 

accuracy was calculated as 100%. Both the macro-
average and weighted-average metrics reached 100%, 
indicating a highly consistent and balanced performance 
between the two classes.

Figure 12. ROC curve and AUC value of the MobileNetV2 
model 

Figure 12 presents the ROC curve of the MobileNetV2 

model on the test dataset. The area under the curve is 

calculated as 1.000, based on the relationship between the 

true positive rate and the false positive rate. 

Figure 13. Confusion Matrix of the NASNetMobile model 

Figure 13 shows the classification results of the 

NASNetMobile model on the test dataset. The 

model produced 2,068 correct and 332 incorrect

predictions for the AI class, and 2,370 correct and 30

incorrect predictions for the Real class.  

Table 12. Performance evaluation metrics of the 
NASNetMobile model 

Class / Metric Precision (%) Recall (%) F1-score (%) 

AI 99.00 86.00 92.00 

Real 88.00 99.00 93.00 

Accuracy - - 92.00 

Macro avg 92.00 92.00 92.00 

Weighted avg 92.00 92.00 92.00 

Table 12 presents the classification performance metrics 

of the NASNetMobile model for the AI and Real classes. 

For the AI class, the precision and recall values are 99% 

and 86%, respectively, while for the Real class, the 

precision is 88% and the recall is 99%. The corresponding 

F1-scores are 92% for the AI class and 93% for the Real 

class. Both macro-averaged and weighted - averaged

metrics are 92%.  

Figure 14. ROC curve and AUC value of the NASNetMobile 
model 

Figure 14 presents the ROC curve of the 

NASNetMobile model on the test dataset. The area under 

the curve is calculated as 0.994 based on the relationship 

between the true positive rate and the false positive rate. 

According to Table 7, MobileNetV2 (99.58%) and 

DenseNet201 (99.56%) achieved the highest success rates; 

DenseNet169 also produced a similarly strong 

performance. These results show that success in tasks such 

as real - synthetic discrimination is influenced not only by 

overall accuracy but also by representational power, 

particularly the ability to capture subtle texture/artifact 

clues. In DenseNet architectures, dense inter - layer 

connections enable more effective transfer of low-level 

texture and edge cues learned in early layers to deeper 



Akbas et al., Intelligent Methods in Engineering Sciences 4(3): 114-128, 2025 

- 124 -

layers, potentially providing an advantage in 

distinguishing diffusion-induced micro-inconsistencies. 

MobileNetV2's ability to achieve similar accuracy with 

shorter training time demonstrates that lightweight models 

can also be highly competitive in this task with the right 

architectural design. 

In contrast, NASNetMobile's lower performance 

92.46% can be attributed more to task suitability 

than to the architecture's representational capacity. 

NASNetMobile is designed with architecture search to 

optimize semantic discrimination, mostly for general-

purpose classification. However, synthetic–real 

discrimination requires sensitivity to high-frequency 

texture cues and small artifacts, independent of class 

semantics. The cell-based and more selective feature 

summarization structure in NASNetMobile may have led 

to the suppression of these weak signals in some cases and 

resulted in more errors, particularly in the synthetic class. 

Indeed, despite NASNetMobile's relatively high recall, its 

lower accuracy / F1 score suggests that the model has an 

increased tendency for false positives/misclassification in 

some synthetic examples and that the decision boundary 

remains more unstable. 

In conclusion, the findings show that the DenseNet 

family and MobileNetV2 provide more appropriate 

representation in real–synthetic discrimination, while 

NASNetMobile cannot provide the same level of fine-

grained artifact sensitivity required for this task.  

Figure 15. Training loss and accuracy curves of the 
DenseNet121 model 

As illustrated in Figure 15, the training and validation 

loss and accuracy curves of the DenseNet121 model are 

presented. As illustrated by the loss curves, the 

convergence behavior across epochs is evident. 

Concurrently, the accuracy curves demonstrate the 

progression of training and validation accuracy during the 

training process. 

Figure 16. Training loss and accuracy curves of the 
DenseNet169 model 

As illustrated in Figure 16, the training and validation 

loss and accuracy curves of the DenseNet169 model are 

presented. The loss curves demonstrate the convergence 

behavior over epochs, while the accuracy curves illustrate 

the evolution of training and validation accuracy 

throughout the training process. 

Figure 17. Training loss and accuracy curves of the 
DenseNet201 model 

As illustrated in Figure 17, the training and validation 

loss and accuracy curves of the DenseNet201 model are 

presented. The loss curves demonstrate the convergence 

pattern across epochs, while the accuracy curves illustrate 

the progression of training and validation accuracy during 

the training process. 

Figure 18. Training loss and accuracy curves of the 
MobileNetV2 model 

As illustrated in Figure 18, the training and validation 

loss and accuracy curves of the MobileNetV2 model are 

presented. The loss curves demonstrate the convergence 

behavior over the periods, while the accuracy curves 

illustrate the enhancement of training and validation 

accuracy throughout the training process. In contrast to 

other DenseNet models, the MobileNetV2 model 

exhibited a more consistent loss and validation curve. The 

fluctuations in loss experienced during training periods are 

conspicuously diminished. 

Figure 19. Training loss and accuracy curves of the 
NASNetMobile model 

Figure 19 shows the training and validation loss and 

accuracy curves of the NASNetMobile model. The curves 

show the behavior of loss and accuracy values for both 

training and validation sets throughout the training 

process. The NASNetMobile model exhibited a lower 

validation accuracy curve during training while showing 

higher validation loss compared to the other four models. 
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This can be explained as follows: NASNetMobile's cell-

based architecture and relatively complex search-space 

design may not be able to represent high-frequency cues 

critical for discrimination in binary classification problems 

focused on “fine texture/artifacts,” such as real–synthetic 

discrimination, in a sufficiently stable manner. Therefore, 

even if the model predicts the correct class in some 

examples, it may produce more “uncertain” predictions by 

generating low probability margins in its outputs. This 

behavior is consistent with the high loss value in the 

validation set, as cross-entropy loss penalizes not only 

correct/incorrect decisions but also the confidence level 

(calibration) of the decision. Furthermore, the relatively 

low F1/accuracy values reported for NASNetMobile in the 

previous section support this weak generalization behavior 

observed in the curves. 

When other architectures are examined, a more stable 

and consistent learning dynamic is noticeable. The steady 

decrease in training and validation loss in the 

DenseNet121/169/201 models and the close tracking of 

accuracy curves indicate that the learned representations 

better align with the data distribution. The dense 

connectivity structure of the DenseNet family enables the 

effective transfer of low-level features, such as edge-

texture, learned in early layers to deep layers, potentially 

providing an advantage in distinguishing micro-

inconsistencies arising from diffusion-based generation. In 

particular, DenseNet201's performance, which approaches 

the lowest error rate, indicates that higher representation 

capacity can be beneficial in this task; however, an 

increase in training time is an expected result. 

On the MobileNetV2 side, it is seen that the curves 

converge faster and the validation performance remains 

high despite the shorter training time. This finding shows 

that MobileNetV2, thanks to inverted residuals and depth-

separable convolutions, is both computationally efficient 

and able to learn sufficient discriminative features in this 

binary classification problem. In conclusion, training 

curve analysis reveals that the DenseNet family stands out 

with its high representational power, MobileNetV2 with its 

efficiency-performance balance, and NASNetMobile with 

its inability to produce the fine-grained artifact sensitivity 

and stable generalization behavior required for this 

problem to the same extent. 

4. CONCLUSIONS

The present study developed a deep learning-based

classification framework to distinguish AI-generated 

images from real images. The study also comprehensively 

evaluated the performance of various CNN architectures. 

MobileNetV2, DenseNet121, DenseNet169, 

DenseNet201, and NASNetMobile were subjected to a 

rigorous evaluation process that utilized key classification 

metrics, including accuracy, sensitivity, recall, F1 score, 

and ROC/AUC. This evaluation also incorporated the 

analysis of confusion matrices and training curves. 

As illustrated in Table 7, MobileNetV2 99.58%

and DenseNet201 99.56% demonstrated the highest 

overall accuracy, while NASNetMobile 92.46% 

exhibited a substantial decline in performance compared 

to the other models. The attainment of a 100% recall 

rate by all DenseNet models serves to substantiate 

their remarkable sensitivity in identifying AI-generated 

images. 

An analysis of the confusion matrices indicates that the 

DenseNet family attains perfect classification for the 

Real class and generates a minimal number of errors in 

the AI class. Among the evaluated models, DenseNet201 

showed low error rates compared to other DenseNet 

models, misclassifying only 21 examples, while 

MobileNetV2 showed the lowest error rates, 

misclassifying 17 examples in the AI class and 

3examples in the Real class. The high rate of false 

positives observed for NASNetMobile, in which AI-

generated images were erroneously classified as 

authentic, signifies challenges in accurately representing 

the variability of synthetic image patterns. 

Training curves demonstrate that DenseNet 

models demonstrate rapid convergence; However, 

transient variations in validation loss are observed around 

the 15th epoch. This phenomenon suggests a transient 

instability in the system's capacity to adapt to complex 

data patterns. MobileNetV2 demonstrates notable 

variations in validation loss; Nevertheless, stability 

in subsequent epochs signifies the emergence of 

robust generalization capabilities. The observed rising 

validation loss trend for NASNetMobile points to a 

precursor trend toward overfitting and limited 

generalization capabilities in complex patterns. 

A comparison of the models utilization in this research 

with those documented in the extant literature reveals 

their superior performance in comparable classification 

tasks. This enhancement can be attributed to the 

efficacy of hyperparameter optimization and the 

utilization of a high-quality, task specific dataset. 

Moreover, by incorporating training times alongside 

classification accuracy, the proposed methodology 

addresses a substantial gap in the extended literature 

with respect to both performance and computational 

efficiency. 

This work corroborates earlier findings 

that conventional detection methods are inadequate 

when confronted with more realistic images 

generated by contemporary generative models, 

including GANs and diffusion-based techniques. The 

paper makes a substantial 
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contribution to the field by offering a comprehensive 

evaluation of various CNN architectures for AI-generated 

image detection. Future research endeavors should focus 

on incorporating multimodal features, investigating Vision 

Transformer-based architectures, and examining 

generative model fingerprints to enhance detection 

efficiency. 
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