
Intelligent Methods in Engineering Sciences 4(2): 54-65, 2025 
 

 

 

 

INTELLIGENT METHODS 

IN ENGINEERING SCIENCES 
 

 

https://www.imiens.org 
 

 

International 

Open Access 
 
 

 

 

 

August, 2025 

 

e-ISSN 2979-9236 

Research Article https://doi.org/10.58190/imiens.2025.127 
 

* Corresponding Author: semaservi@selcuk.edu.tr  

 
 

 

 

A Fixed-Grid Rdtm-Based Computational Strategy for Nonlinear Partial 

Differential Equations 

Sema Servi a,* , Galip Oturanç b  

a Department of Computer Engineering, Faculty of Technology, Selçuk University, Konya, Türkiye 
b Department of Mathematics, Faculty of Science, Karamanoğlu Mehmetbey University, Karaman, Türkiye 

 

  ARTICLE INFO  ABSTRACT 

Article history: 

Received 31 July 2025 
Accepted 24 August 2025 

 In this study, a fixed-grid version of the Reduced Differential Transform Method (RDTM) is 

systematically implemented to obtain approximate solutions of linear and nonlinear partial 

differential equations. In this method, the solution range is divided into equal subregions and the 

fixed-grid algorithm is integrated into the RDTM framework. This approach provides an efficient 

and orderly computational process for solving complex partial differential equations. The 

effectiveness of the proposed method is demonstrated on the homogeneous Klein–Gordon 

equation (a representative hyperbolic equation) and the nonlinear Klein–Gordon equation, and the 

obtained approximate solutions are compared with known analytical solutions with high accuracy 

and consistency. Furthermore, the proposed fixed-grid RDTM (FGS-RDTM) framework offers 

potential integration with intelligent systems where accurate and efficient numerical solvers are 

required for modeling, control, and learning in dynamic environments. These results confirm the 

reliability and practical usefulness of the new method in addressing nonlinear partial differential 

equations in the context of intelligent computational systems.  
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1. INTRODUCTION 

Partial differential equations (PDEs) are central to the 

mathematical modeling of physical, chemical, and 

mechanical processes in many disciplines, ranging from 

the natural sciences to engineering. They are indispensable 

for describing the behavior of complex processes, 

particularly in multidisciplinary fields such as fluid 

mechanics, thermodynamics, heat transfer, 

electromagnetism, mathematical physics, and artificial 

intelligence-based systems modeling. In recent years, 

advances in both mathematical methods and 

computational technologies have enabled the development 

of efficient solution techniques for analytical and 

approximate solutions of these equations. 

In recent years, with the advances in theoretical 

mathematics and the development of numerical computing 

technologies, many effective methods for the analytical, 

semi-analytical and numerical solutions of partial 

differential equations (PDEs) have been introduced into 

the literature. In this context, iterative approaches such as 

the Variational Iteration Method (VIM) [1-3], the 

Homotopy Analysis Method (HAM) [4] and the 

Homotopy Perturbation Method (HPM) [3, 5, 6] stand out 

among the widely used methods, especially in the solution 

of linear and nonlinear PDEs. In addition, the Differential 

Transform Method (DTM) [7, 8] and its improved version, 

the Reduced Differential Transform Method (RDTM), are 

frequently preferred, especially for their ease of use and 

speed of convergence. RDTM was introduced in 2009 as 

an improved version of DTM; the approach provides more 

efficient results compared to DTM, especially by reducing 

the number of iterations and the computational cost[9]. 

The advantages of this methodology in nonlinear PDEs 

have been clearly demonstrated on problems such as the 

homogeneous heat equation, the Burgers equation, the 

KDV equation, and the Klein–Gordon equation [10-21] 

The Adomian Decomposition Method (ADM) [22-24] 

is a semi-analytical technique that decomposes nonlinear 

operator equations into a set of functions and allows for 

the systematic treatment of nonlinear terms in differential 

equations [25]; the Elzaki and Laplace Transform Methods 

are used to solve initial value problems with integral 

transform techniques [26, 27]. In addition, the Sine-Cosine 

Method [28], the Taylors Series Method [28], the Galerkin 

and Petrov–Galerkin Methods, Spectral Methods with 

Chebyshev Polynomials [29], the Variational Iterative 

Method (VIM), and Hybrid Methods, including the VIM-

HPM hybrid and the Adomian-Laplace Combination, have 

provided effective solution strategies for both linear and 
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nonlinear KDPs in recent years [27, 29, 30]. More 

recently, fractional and integral-based approaches such as 

VIE RDTM (RDTM extended with Volterra Integral 

Equations) have been developed [30]; they reduce the error 

rate and expand the area of convergence in applications 

ranging from the Black-Scholes equation to binary heat 

wave-type differential equations [31]. Additionally, 

studies published in the 2022–2023 period emphasized the 

hybrid applications of RDTM with the Padé approach in 

more complex systems such as two-dimensional 

convection-diffusion equations [30] and its high accuracy 

[32]. 

The fixed grid size method, also called RDTM, was first 

proposed by Servi in his doctoral studies and has been 

successfully applied to problems such as the homogeneous 

heat equation [21], the Burgers equation[21], the Newell–

Whitehead–Segel (NWS) equation [33], the telegraph 

equations [34], the wave equations [35], the Sine-Gordon 

equations [34], and Gaousat [36]. In this method, by 

dividing the solution domain into fixed-range subregions, 

error control is facilitated and the convergence rate is 

significantly increased. This grid-based algorithm was 

previously used by Ming-Jyi Jang, Chieh-Li Chen, and 

Yung-Chin Liy to solve linear and nonlinear initial value 

problems with DTM, and positive results were obtained 

[37]. 

2. MATERIAL AND METHODS 

2.1. Reduced Differential Transform Method with Fixed 
Grid Size Solution 

The basic concepts and definitions of RDTM (Reduced 

Differential Transform Method) have been discussed 

comprehensively in the works [9, 21] 

Definition 

If the function ( ),u x t  is analytically and continuously 

differentiable on a certain interval with respect to both 

time t  and space x  variables, then the spectrum function 

( )kU x  in dimension t  is obtained as the transformed 

form of that function. 

0

1
( ) ( , )

!
=

 
=  

 

k

k k

t

U x u x t
k t

   (2.1) 

In this study, the lowercase letters ( ),u x t  represent 

the original function, while the uppercase letters ( )kU x  

represent the transformed form of this expression. The 

differential inverse transform of the function ( )kU x  is 

defined as follows: 

k

k

k xtUtxu 


=

=
0

)(),(     (2.2)  

When Equation (2.1) and Equation (2.2) are considered 

together, the following expression is obtained: 

k
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A review of the previous definitions clearly 

demonstrates that the RDTM approach was developed 

based on power series expansion. Based on this foundation 

and the operational rules in Table 1, the following 

recurrence relationship can be established: 
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Table 1. Reduced Differential Transformation 

Function Transformation Equivalent 

( , )w x t  
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kW t k m t= −  

( , ) ( , )m nw x t x t u x t=  ( ) ( ) n

k k mW t U t t−=  

We aim to investigate the solution of the 

differential equation (1.2) in the interval  0, .T

In this context, the relevant interval is divided 

into subregions N  with equally spaced grid 

points defined as  0 1,, , Nt t t , as shown in 

Figure 1. 
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.  

Figure 1. Approximation functions in each sub domain 

In the formulation 0 0, Nt t T= =  is taken as, and for 

each 0,1,2, ,i N=  Here, the step width h is 

determined as, 

0it t ih= + . 
T

h
N

=     (2.4) 

After applying RDTM transformations to the function, 

the approximate solution on the first subinterval  0 1,t t is 

defined as ( )0 ,u x t . This approximate solution is 

expressed by a Taylor polynomial of order 𝑛. developed 

around the point 0 0t = . 

( ) ( ) ( )( )

( ) ( )

0 0 0

0 0 1 0 0

0 2 0

2 0 0 0 0

, , ,

, ( ) , ( )

= + −

+ − + + − n

n

u x t U x t U x t t t

U x t t t U x t t t
 (2.5) 

The initial condition of this polynomial is obtained by 

substituting it in (2.5), 

( ) ( )0

0 0 0, ,=u x t U x t     (2.6) 

When the value of ( )0 ,u x t is calculated, this value is 

used as the initial condition for the approximate solution 

( )1

0 ,u x t in the interval  1 2,t t . The value of ( )1

0 ,u x t  

is obtained as in equation (2.7). 
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and the approximate solution in this range is obtained 

using equation (2.8) given below.
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Following similar steps, ( )2 ,u x t  can be calculated as 

follows, 
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Following the same procedure, the approximate solution 

of the ( ),iu x t function at grid point 1+it can be obtained 

as follows. 
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approximatethedeterminingAfter solutions

( ) ( ) ( )1 2, , , , ..., ,iu x t u x t u x t  from the first step, the 

analytical solution of ( ),u x t is obtained as follows. 
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            (2.11) 

Increasing the value of N  here can provide more 

accurate and precise approximate results. 

2.2. Application Examples of the Proposed Method 

In this section, the numerical results obtained are 

compared with analytical solutions to evaluate the 

effectiveness and advantages of the proposed method. The 

results are quite promising in demonstrating the accuracy 

and applicability of the method. To illustrate this, some 

example problems using the Klein-Gordon Equation are 

examined below. Furthermore, all computations were 

performed in Maple 13 on a 13th Gen Intel® Core™ i9-

13900H system with 16 GB RAM under Windows 11. 

Example 2.2.1 

The homogeneous Klein-Gordon equation and the 

initial condition used are given in Eq. (2.12) and Eq.(2.13) 

as follows: 

0tt xxu u u− + = ,  0t                (2.12) 

( ,0) 0, ( ,0)tu x u x x= =              (2.13) 

is(2.12)Eq.ofsolutionanalyticalThe

( , ) sin( )u x t x t=  [38] theobtainlet'sNow,.

approximate solution of Eq. (2.12) using the Fixed Grid 

Size Reduced Differential Transform Method (FGS-

RDTM). 

When 5N = andselectedis
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1 2 3 4
0, , , , , 1

5 5 5 5
t t t t t t
 

= = = = = = 
 

values are used, the Reduced Differential Transform 

Method (RDTM) is applied to equation (2.12) with the 

help of the necessary transformation formulas given in 

Table 1 and Eq. (2.14) is obtained. 

2
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2 2
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k k k
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U x U x U x

k x
+
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= −
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            (2.14) 

Here ( )kU x is the reduced differential transform of the 

solution to be calculated along t  of ( , )u x t . Eq. (2.13) is 

obtained from the initial condition Eq. (2.15). 
0

0 0 0

0

1 0

( , ) ( , ) 0

( , )

u x t U x t

U x t x

= =

=
              (2.15) 

At this point, the initial conditions in (2.15) are 

substituted into equation (2.14) to obtain the values of 
1( )N

kU x−
. Then, using the values of ( )N

kU x  calculated 

for 5N = , approximate solutions of ( , )Nu x t are 

presented in Table 2 below. 
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▪ Table 2. Approximate solutions for ( , )Nu x t  for Example 2.2.1  
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Below are graphs showing the approximate solution of 

Eq. (2.12) found from FGS-RDTM and the comparison of 

the solution values found with the variation iteration 

method (VIM) with the analytical solution. 

 
 

(a)                                                        (b) 

Figure 2. (a) Comparison of analytical solutions with FGS-RDTM. (b) Comparison of analytical solutions with VIM. 

 

In this Figure2, for the value (a): The green area 

represents the analytical solution, the red dots represent the 

result obtained with the FGS-RDTM methods, (b): The 

green area represents the analytical solution, the blue dots  

represent the solution obtained with VIM. 

In Table 3 below, the absolute error values of the results 

obtained with the FGS-RDTM and the VIM with the 

analytical solution are presented. 

 

 

Table 3. Absolute Error Values Obtained by FGS-RDTM and VIM Compared to Analytical Solution. 

 x Absolute Error Values FGS-RDTM Absolute Error Values VIM 

 

 

t = 0.2 

0.2 0.0 2.6.10−20 

0.4 0.0 5.3.10−20 

0.6 0.0 8.10−20 

0.8 0.0 1.1.10−19 

 

 

 

t = 0.4 

0.2 6.10−21 2.15377. 10−16 

0.4 2.10−20 4.3076. 10−16 

0.6 1.10−20 6.4613. 10−16 

0.8 2.10−20 8.6151. 10−16 

 

 

 

t = 0.6 

0.2 2.10−20 4.187663. 10−14 

0.4 4.10−20 8.375327. 10−14 

0.6 1.2562990. 10−20 1.2562990. 10−13 

0.8 8.10−20 1.6750654. 10−13 

 

 

 

t = 0.8 

0.2 4.10−20 1.76034197. 10−12 

0.4 8.10−20 3.52068393. 10−12 

0.6 1.10−19 5.28102591. 10−12 

0.8 1.4. 10−20 7.04136787. 10−12 
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(a)                                              (b) 

Figure 3. In the given graphs (a): FGS-RDTM Absolute Error Comparison (b): VIM Absolute Error Comparison 

 

The absolute error graphs of Eq.(2.12) obtained with 

FGS-RDTM and VIM are shown in Figure 3. 

Table 3 and Figure 3 compare the absolute error values 

of the approximate solutions obtained with the FGS-

RDTM, and VIM for Example 2.2.1 at different values of 

x  and t , compared to the analytical solution. 

Analysis of the results reveals that the FGS-RDTM 

method produces extremely low error values across all 

time steps. In particular, the error values are nearly zero 

for 0.2=t  and 0.4=t , demonstrating high accuracy in 

the early time intervals. 

In contrast, the error values obtained with the VIM 

method increase significantly as the time step increases. 

For example, at 0.8=t and 0.2=x , the error for VIM 

is approximately 
121.7603419 107. −

, while at the same 

point, the error for FGS-RDTM is only 
204.10−

. This 

difference translates to approximately 8 orders of 

magnitude lower error. 

The FGS-RDTM method produced stable and 

consistent results, even for x  values that increase with 

time. This suggests that integrating the FGS-RDTM and 

constant grid spacing approach into the reduced 

differential transform method both increases accuracy and 

maintains numerical stability. 

Example 2.2.2 

Homogeneous Klein-Gordon equation, which is a type 

of hyperbolic equation, 

0tt xxu u u− − =
              (2.16) 

( ,0) 1 sin , ( ,0) 0tu x x u x= + =
            (2.17) 

and analytical solution is
( , ) sin( ) cosh( )u x t x t= +  [13]. 

Let's calculate the approximate solution of Eq. (2.16) 

with FGS-RDTM. 

If the reduced differential transformation method is 

applied to Eq. (2.16) by choosing N 5= and using Table 

1, Eq (2.17) is obtained. 

2
0 0 0

2 2

( 2)!
( ) ( ) ( )

!
k k k

k
U x U x U x

k x
+

+ 
= +
         (2.18) 

Here ( )kU x  is the reduced differential transform of 

the solution of ( , )u x t  to be calculated along t . From the 

initial condition (2.17), 
0

0 0 0

0

1 0

( , ) ( , ) 1 sin( )

( , ) 0

u x t U x t x

U x t

= = +

=
                  (2.19) 

From here, we can obtain the 
1( )−N

kU x  values by 

substituting the initial conditions in (2.19) into (2.18). 

Below are graphs showing the comparison of the 

analytical solution of equation (2.16) with the approximate 

solution found by FGS-RDTM and the results found by the 

variation iteration method. 
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(a) (b) 

Figure 4. (a) Comparison of FGS-RDTM and the analytical solution, (b) Comparison of VIM and the analytical solution 

 

where, for the value of N = 5, (a): The green area is the 

analytical solution, the red dots show the result obtained 

with the FGS-RDTM, (b): The green area is the analytical 

solution, the blue dots show the solution obtained with 

VIM. 

The graph of absolute errors of equation (2.16) obtained 

with FGS-RDTM is given in Figure 5. 

 

 
Figure 5. Absolute errors obtained with FGS-RDTM  

The three-dimensional graph in the figure shows the 

absolute error distribution of the solution using the FGS-

RDTM method compared to the analytical solution. Error 

values in the order of 
2410−

clearly demonstrate that the 

developed method provides very high accuracy. 

Furthermore, the errors are observed to be distributed 

regularly and homogeneously in both the x and t 

directions. This demonstrates that the method not only 

provides precise results but also exhibits stable and 

consistent behavior throughout the solution space. These 

results demonstrate that the FGS-RDTM method is a 

powerful and effective approximate solution method that 

can be used with confidence in situations where an 

analytical solution cannot be found. 

Example 2.2.3 

Nonlinear Klein-Gordon equation and initial condition, 

which are linearly distorted by the  
2( )F u u= − term ,are 

given in Eq. (2.20) and Eq. (2.21) [39, 40]. 
2

tt xxu u u− = −                (2.20) 

( ,0) 1 sin( ) , ( ,0) 0tu x x u x= + = , 0t            (2.21) 

Choosing 5N =  and dividing the interval  0,1  into 

5 equal parts, we obtain the  values. The reduced 

differential transform equivalent of equation (2.20) and the 

initial conditions (2.21) can be seen in Eq. (2.22). 

( )
2

2 2

0

0 0

0

0

0

0

1

( 2)!
( ) ( )

!

( , ) ( , ) 1 si

(

n( ) ,

( ,

)

) 0

k

k s s

s

k k U x U x
k

U x U x
k x

u x t U x t x

U x t

+ −

=

+ 
= −


= = +

=



                  (2.22) 

and exact solution of Eq. (2.20), ( , ) sin( )=u x t x t  

 Substituting the obtained initial conditions into Eq. 

(2.22), we can obtain the 
1( )N

kU x−
values. Then, for 

5N = , the approximate solutions for 
1( , )−Nu x t are 

found, respectively, using the calculated 
1( )N

kU x−
values. 

The graphs showing the approximate results obtained after 

calculating the approximate solutions up to 
5 ( , )u x t  are 

given in Figure 5 below. 

it
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(a)                                                       (b) 

 
Figure 6. (a): FGS-RDTM (b): VIM 

 

After calculating the approximate solution, the 

comparison of the obtained approximate results with ADM 

[39] and VIM [40] according to the selected x and t values 

is given in the table below. 

 

 

 

▪ Table 4. Comparison Results 

x 
t = 0.2 t = 0.3 

ADM VIM FGS-RDTM ADM VIM FGS-RDTM 

0.0 0.979999116 0.9800015775 0.9800000001  0.954990005 0.955017653 0.9549266388 

0.2 1.166134875 1.16613805 1.166138093 1.125945576 1.125974851 1.125803615 

0.4 1.343423788 1.343432104 1.343435074 1.287043874 1.287088824 1.286814817 

0.6 1.505052082 1.505073495 1.505080634 1.432404521 1.432497282 1.432104538 

0.8 1.644954933 1.64499754 1.645009692 1.557040327 1.557215916 1.556699252 

1.0 1.75799845 1.758066925 1.758084239 1.656928567 1.657208637 1.656576413 

 

The results presented in Table 4 reveal that the ADM, 

VIM, and proposed FGS-RDTM produce very similar and 

consistent approximate solutions for different x values at 

0.2=t and 0.3=t . The differences between the results 

obtained by all three methods are quite small, indicating 

that the FGS-RDTM exhibits competitive performance in 

terms of numerical stability. In particular, the FGS-RDTM 

method is in high agreement with ADM and VIM over the 

entire x  range, producing more precise values at some 

points. This consistency supports the applicability and 

reliability of the method, thus indicating that FGS can be 

considered as an alternative to common methods in the 

literature. 

3. RESULTS AND DISCUSSION 

In this study, the proposed Fixed Grid Interval Reduced 

Differential Transform (FGS-RDTM) method 

demonstrated high success in obtaining approximate 

solutions of linear and nonlinear, homogeneous and 

nonhomogeneous partial differential equations. Numerical 

results obtained on applied example problems demonstrate 

the effectiveness of the method in terms of both accuracy 

and stability. 

The three-dimensional absolute error distribution plot 

presented in Figure 4 illustrates the differences between 

the solution applied by combining the FGS-RDTM 

methods and the analytical solution. The magnitude of the 

errors remains on the order of 
2410−

, demonstrating the 

method's exceptional accuracy. Furthermore, the regular 

and homogeneous structure of the error distribution in both 

the x  and t  directions demonstrates that the method not 

only achieves high accuracy but also exhibits numerically 

stable and consistent behavior throughout the entire 

solution space. 

In addition, the approximate solutions obtained by the 

ADM, VIM, and proposed FGS-RDTM were 

comparatively evaluated at different x values for the 
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instants 0.2=t  and 0.3=t . The results in Table 4 show 

that all methods produce similar outputs; however, the 

FGS method stands out by providing more accurate results 

at some points. Compared to the ADM and VIM methods, 

the solutions produced by FGS-RDTM  have significantly 

lower numerical deviations and are consistent across the 

entire range. This demonstrates that the proposed method 

not only has competitive accuracy but also provides robust 

and reliable solutions under different initial and boundary 

conditions. 

4. CONCLUSIONS 

In this study, a new algorithm with a fixed grid spacing, 

developed based on the reduced differential transform 

method, is proposed and its success in approximate 

solutions of partial differential equations is evaluated. By 

dividing the solution range into equal subregions and 

applying iteratively to each subregion, the developed FGS-

RDTM method produces highly accurate solutions with 

very small error values. Furthermore, the ability to 

increase the order according to the desired error tolerance 

thanks to the recurrence relation, which only includes 

derivative terms, provides flexibility and ease of 

application. 

One of the most important advantages of the method is 

its easy applicability to many types of PDEs frequently 

encountered in the literature, including linear/non-linear 

and homogeneous/inhomogeneous. Analyses supported by 

three-dimensional error distribution plots clearly 

demonstrated the method's superior performance in terms 

of both accuracy and stability. Furthermore, comparisons 

with common methods such as ADM and VIM revealed 

that the FGS method is at least as effective and reliable as 

an alternative. 

In conclusion, the FGS-RDTM method can be used as a 

powerful and effective approximate solution technique for 

problems where analytical solutions cannot be obtained. 

Future work is recommended to apply the method to more 

challenging problem groups, such as those with more 

complex boundary conditions, time-dependent 

coefficients, or stochastic differential equations. 
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