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 Accurate segmentation of organ-at-risk (OARs) in head and neck CT images is crucial for 
radiotherapy planning, but it remains a challenging task due to anatomical complexity, low soft-

tissue contrast, and the presence of small, variable structures. We propose DSTANet, a novel dual-

scale transformer-guided attention network that integrates multi-resolution encoding, transformer-

based global context fusion, and anatomically guided attention refinement to deliver precise multi-
OAR segmentation. Unlike traditional CNN-based methods, DSTANet effectively models long-

range spatial dependencies while preserving high-resolution boundary detail. On the HNSCC-

3DCT-RT dataset, DSTANet achieved a mean Dice Score of 97.5% and a mean 95 th percentile 

Hausdorff Distance (HD95) of 2.32 mm, while on the MICCAI 2015 benchmark dataset, it 
achieved 90.0% Dice, which surpasses several state-of-the-art approaches both in terms of overlap 

and geometric accuracy. These results, combined with a sub-20-second inference time, establish 

DSTANet as a robust and clinically viable solution for automated head and neck OAR 

segmentation.  
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1. INTRODUCTION 

Accurate segmentation of organs at risk (OARs) in 

radiotherapy planning is crucial for the safe and successful 

delivery of therapeutic radiation doses [1]. In head and 

neck (H&N) cancer, where multiple vital organs are 

densely packed into a small anatomical area [2], careful 

identification of organs at risk (OARs) such as the optic 

nerves, chiasm, brainstem, and parotid glands is essential. 

Minor segmentation errors can lead to significant changes 

in dose distribution, resulting in inadequate tumor 

coverage or, more importantly, inadvertent irradiation of 

healthy tissues [3]. This can result in substantial long-term 

toxicities such as eye loss, salivary malfunction, and 

neurological damage. As a result, automatic and precise 

OAR segmentation has become an essential component in 

the development of clinically deployable radiation systems 

[4]. 

However, high-precision segmentation in the head and 

neck (H&N) area remains a significant challenge [5]. The 

organs vary significantly in size, ranging from minuscule 

structures like the optic chiasm, which is just a few voxels 

thick, to huge volumes like the mandible [6]. Many OARs 

are closely located and often appear in low contrast against 

surrounding tissues, with blurry or poorly-defined borders 

on non-contrast CT scans [7]. These qualities impede 

standard intensity-based segmentation and demand 

architectures capable of resolving fine spatial information 

while understanding global anatomical context. 

Furthermore, volumetric segmentation of entire 3D CT 

images imposes a significant computational cost, 

frequently necessitating trade-offs between model 

complexity, inference time, and memory usage, factors 

that impede real-time implementation in clinical 

processes. The growing success of artificial intelligence 

across diverse domains, including natural language 

processing, industrial automation, and cybersecurity [8-

12], further reinforces its potential to enhance 

segmentation accuracy, reduce clinical workload, and 

improve treatment safety in radiotherapy applications.  

Several approaches have been investigated to overcome 

these difficulties, ranging from atlas-based registration 
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techniques to fully convolutional neural networks (FCNs) 

[13], 3D U-Nets [14], and current attention-based models 

such as PANet [15]. While these approaches have 

provided promising results, they tend to underperform on 

small and overlapping structures because they rely on local 

receptive fields or manually crafted regional features. 

Furthermore, most topologies do not scale efficiently 

across full-volume inputs or generalize well across a wide 

range of patient anatomy and imaging techniques [16]. The 

lack of anatomical prior integration and explicit boundary 

refinement processes often results in coarse or misaligned 

segmentations, particularly for low-contrast or partially 

occluded OARs [17]. 

To address these limitations, we introduce DSTANet, a 

new Dual-Scale Transformer-Guided Attention Network 

specially designed for efficient and accurate multi-OAR 

segmentation in head and neck radiation. DSTANet 

incorporates three key innovations: a dual-scale encoder 

that captures both high-resolution local features and low-

resolution global context, a transformer-guided fusion 

module that models long-range spatial dependencies, and 

a guided attention refinement block that uses anatomical 

prior maps to improve boundary precision. Notably, the 

architecture remains lightweight and computationally 

efficient while maintaining accuracy. We undertake 

thorough assessments on both the HNSCC-3DCT-RT [18] 

and MICCAI 2015 datasets [19], indicating that DSTANet 

surpasses cutting-edge baselines in terms of Dice accuracy 

and boundary conformity, particularly for small and 

challenging organs at risk (OARs). 

The rest of the paper is as follows: Section 2 discusses 

the related work. The proposed methodology is presented 

in Section 3. Section 4 shows the experimental setup. 

Sections 5 and 6 present results, analysis, and discussions. 

Section 7 shows the conclusion and future work.   

2. Related work 

DL-based solutions have been used in many fields, i.e., 

disease detection in humans [30] – [38], plants [39] [40], 

and various multidisciplinary fields [41] – [46]. Similarly, 

DL techniques are also being used for the early 

segmentation of tumors and OAR. Zhu et al. (2019) [20] 

proposed AnatomyNet, an end-to-end 3D convolutional 

neural network designed to segment head and neck organs-

at-risk (OARs) directly from whole-volume CT scans. The 

model incorporated squeeze-and-excitation residual 

blocks and a hybrid Dice-focal loss function to balance 

small and large organ segmentation better. On the 

MICCAI 2015 dataset, AnatomyNet achieved an average 

Dice score of 78.3% across nine OARs. However, 

performance for small-volume architecture, such as the 

optic nerves and chiasm, remained suboptimal, with 

chiasm Dice falling by 70%, which highlights limitations 

in spatial context modeling and fine detail preservation. To 

directly address the large-to-small organ size imbalance, 

Gao et al. (2019) [21] proposed FocusNet, which 

addressed the imbalance between large and small OARs 

by incorporating organ localization and a dual-path 

architecture, including a dedicated branch for small 

structures. Their model achieved an average Dice score of 

81.5%, indicating strong improvements for organs such as 

the optic nerves, where the Dice scores exceeded 76%. 

Liang et al. (2020) [22] developed a multi-view ROI 

aggregation framework that employed fine-grained CNNs 

across axial, sagittal, and coronal views to perform 

localization and segmentation jointly. On the MICCAI 

2015 dataset, their model achieved a mean Dice of 82.1%, 

outperforming traditional single-view models, especially 

on mid-size organs such as the parotids. However, its 

reliance on 2D projections reduced volumetric continuity, 

and small organs at risk (OARs), such as the chiasm, still 

exhibited lower boundary fidelity. Chen et al. (2020) [23] 

introduced a PANet within a stepwise refinement 

framework, integrating prior attention and multi-scale 

feature pyramids to guide the segmentation process. 

PANet achieved a mean Dice of 85.2% across all OARs 

and performed exceptionally well on large and medium 

organs such as the brainstem and mandible. Nonetheless, 

it reported lower accuracy on small targets such as the 

optic chiasm (69.5% Dice), due to limited boundary-aware 

refinement and lack of global spatial reasoning.   

Wang et al. (2021) [24] extended segmentation 

techniques to dual-energy CT (DECT) using attention-

enhanced dual pyramid R-CNNs. The model leveraged the 

additional spectral contrast from DECT channels to 

achieve a mean Dice of 86.1%, notably improving 

performance on soft-tissue structures. However, the 

requirement for DECT imaging restricts its applicability in 

many clinical environments that rely on standard single-

energy CT (SECT). 

Dai et al. (2022a) [25] transitioned to MRI-based 

segmentation, designing an attention-enhanced pyramid 

network coupled with a mask-scoring R-CNN to delineate 

OARs. Their model achieved mean Dice scores exceeding 

88% for high-contrast soft-tissue organs in MRI, such as 

the brain and parotids. Despite strong results, the 

architecture was validated only on MRI data and not tested 

on CT, limiting its cross-modality generalization. Dai et al. 

(2022b) [26] proposed a deep learning pipeline for 

tracking anatomical variation across weekly QA CT scans 

using FCOS-based detection and hierarchical refinement. 

Although not tailored for baseline segmentation, their 

method yielded time-consistent Dice scores of around 83% 

for large organs, which helps monitor tumor shrinkage and 

plan adaptation. However, its coarse output was less suited 

for precise OAR delineation at the initial planning stage. 

The summary of related work is shown in Table 1.  
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Table 1. Summary of the Related Work. 

Author  Approach  Improvement  Limitations  

Zhu et al. 

(2019) 

[20] 

AnatomyNet 

(3D U-Net + 

SE blocks + 

hybrid loss) 

Mean Dice: 

78.3%; fast 

inference; small 

organ handling 

Weak on 

chiasm/nerves; 

no attention or 

longer-range 

modeling 

Gao et al. 

(2019) 

[21] 

FocusNet with 

organ-specific 

subnetworks  

Mean Dice: 

81.5% strong 

on optic nerves 

Complex ROI 

design; not fully 

end-to-end 

Liang et 

al. (2020) 

[22] 

Multi-view 2D 

ROI 

aggregation 

across planes 

Mean Dice: 

82.1%; better 

mid-size organ 

accuracy 

Uses 2D slices; 

weak on 3D 

consistency and 

fine details 

Chen et 

al. (2020) 

[23] 

PANet + 

stepwise 

refinement + 

attention 

pyramids 

Mean Dice: 

85.2% solid 

multi-scale 

learning  

Poor chiasm 

Dice (~69.5%); 

no global 

context 

modeling 

Wang et 

al. (2021) 

[24] 

DECT 

attention-based 

dual pyramid 

R-CNN 

Mean Dice: 

86.1%; good for 

soft tissues  

Requires DECT 

scanner; not 

widely available 

Dai et al. 

(2022a) 

[25] 

MRI-based 

mask-scoring 

R-CNN with 

attention 

pyramid 

Dice > 88% on 

MRI organs 

MRI only; not 

validated on CT 

data 

Dai et al. 

(2022b) 

[26] 

FCOS + 

refinement for 

temporal QA 

segmentation 

Dice ~83% for 

large organs; 

useful for 

treatment 

tracking 

Weak at 

baseline 

segmentation; 

low precision on 

small structures 

2.1. Gap analysis 

Despite tremendous advances in automated 

segmentation of head and neck organs-at-risk (OARs), 

present methods have significant drawbacks that affect 

both accuracy and clinical applicability. Many previous 

models depend heavily on convolutional backbones, 

which have a finite receptive field. As a result, they 

frequently fail to capture the long-range spatial 

interdependence required to appropriately separate 

anatomically distributed components such as the bilateral 

parotids, optic nerves, and chiasm. While designs like 

PANet and FocusNet have offered local attention or ROI-

based submodules, these solutions are still heavily reliant 

on local context and need hand-crafted area proposals or 

extensive network management. 

      Furthermore, performance deterioration on small-

volume organs at risk (OARs) is a recurring concern in the 

research. Even with high-performing models, Dice scores 

for structures like the optic chiasm and nerves frequently 

dip below 75%, owing to poor soft-tissue contrast and 

insufficient border representation. This is compounded by 

class imbalance during training, in which tiny organs make 

negligible contributions to the loss function. Although 

solutions such as dice-focal hybrid loss have been 

investigated, they often provide only modest benefits in 

the absence of architectural support for fine-grained 

feature augmentation. 

      Another significant restriction is the design 

separation of the global encoding and refining phases. 

Many current networks either stress global context over 

spatial detail or rely on postprocessing refinement 

processes that cannot be trained end-to-end. This 

separation introduces duplication, increases computational 

complexity, and hinders the cohesive learning of 

boundary-aware features. Furthermore, the lack of 

anatomically directed processes in most segmentation 

pipelines implies that model attention is unconstrained by 

biological priors, raising the possibility of mislocalization 

in the presence of anatomical variances, tumor-induced 

deformations, or image distortions. 

      Finally, generalizability across datasets is still an 

issue. Several high-performing models perform well on the 

MICCAI 2015 dataset but experience a decrease in 

performance when applied to more diverse real-world 

datasets, such as HNSCC-3DCT-RT. This is frequently 

owing to overfitting on limited data distributions and a 

lack of explicit modules for collecting high-level 

anatomical semantics, which are required for resilience 

across imaging methods and patient groups. 

In summary, there is still a need for a unified 

segmentation architecture that can: (i) model both global 

and local context at the same time; (ii) incorporate 

anatomical prior knowledge directly into the learning 

process; (iii) improve boundary refinement for small and 

low-contrast OARs; and (iv) maintain generalizability 

across datasets without relying on handcrafted operations. 

Addressing these deficiencies is the driving force for the 

creation of DSTANet, our proposed Dual-Scale 

Transformer-Guided Attention Network for multi-OAR 

segmentation in head and neck radiation. 

2.2. Key Innovations and Novelty 

DSTANet features several architectural advancements 

that distinguish it from previous transformer-based 

segmentation models in medical imaging. This includes: 

Dual-scale encoding is a two-stream encoder that 

captures both high-resolution spatial data and low-

resolution semantic context, retaining boundaries and 

simulating organ-level distribution. 

Transformer-guided 3D fusion: Unlike previous 2D 

transformer applications, DSTANet uses a 3D multi-head 

self-attention mechanism to capture long-range 

dependencies across volumetric organ structures, assisting 

in the segmentation of anatomically similar but 

geographically disparate areas. 

Anatomical prior integration: The model uses soft 

anatomical priors from a weakly supervised locator 

network to guide attention in a biologically informed 

manner, which is absent in most previous transformer-

based architectures. 

Dual-head decoder: DSTANet employs different 

decoder branches for big and small OARs, solving class 

imbalance directly without the use of sophisticated loss 

functions or sampling algorithms. 

Together, these advancements enable DSTANet to 
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conduct end-to-end segmentation that is both 

computationally fast and clinically robust, distinguishing 

it from previous studies that depend largely on handmade 

modules or external refinement processes. 

3. Proposed Methodology 

3.1. Overview of DSTANet Architecture 

This section presents the architecture and core 

innovations of the proposed Dual-Scale Transformer-

Guided Attention Network (DSTANet), designed for 

accurate, efficient, and generalizable segmentation of 

multiple Organs-At-Risk (OARs) in head and neck 

radiotherapy, as shown in Fig. 1. The technique is designed 

to address major issues, including the disparity in size 

among OARs, indistinct organ borders, and the significant 

computational expenses associated with full-volume CT 

segmentation. Our design uses a transformer-

guided fusion module for contextual integration, a dual-

path encoding mechanism for multi-resolution feature 

extraction, and a guided attention module to fine-tune 

segmentation based on learnable spatial cues and 

anatomical priors. 

3.2. Input Preprocessing and Anatomical Prior 
Generation 

The performance of medical image segmentation 

models, particularly in radiotherapy applications, is highly 

sensitive to the spatial consistency and intensity 

normalization of the input volumes. Therefore, the initial 

phase of our proposed DSTANet pipeline performs 

standardized preprocessing on all CT data. Given an input 

3D CT volume ℐ ∈ ℝ𝐻×𝑊×𝐷, we apply intensity clipping 

based on soft-tissue windowing parameters: window level 

WL= 40 and window with WW = 350, such that: 

ℐ𝑐𝑙𝑖𝑝(𝑥) =

{
 
 

 
 𝑊𝐿 −

𝑊𝑊

2
,       𝑖𝑓 ℐ(𝑥) < 𝑊𝐿 −

𝑊𝑊

2

ℐ(𝑥),      𝑖𝑓 𝑊𝐿 −
𝑊𝑊

2
≤ ℐ(𝑥) ≤ 𝑊𝐿 +

𝑊𝑊

2

𝑊𝐿 +
𝑊𝑊

2
,       𝑖𝑓 ℐ(𝑥) > 𝑊𝐿 −

𝑊𝑊

2

  

The resulting image is then normalized linearly to the 

range [-1,1]. This transformation is crucial to stabilize 

training across heterogeneous CT scanners and imaging 

conditions. To enable targeted special reasoning in the 

subsequent network modules, we incorporate anatomical 

priors in the form of voxel-wise probability maps. These 

priors are not learned jointly with the main segmentation 

task but are derived from a lightweight ROI Locator 

Network ℛ𝜃, trained separately using weakly supervised 

group-wise labels. The network ℛ𝜃 maps an input CT to a 

multi-class probability distribution over anatomical 

regions: 

𝒫𝑅𝑂𝐼=ℛ𝜃(ℐ𝑐𝑙𝑖𝑝),      𝒫𝑅𝑂𝐼 ∈ ℝ
𝐻×𝑊×𝐷×𝐶𝑔𝑟𝑜𝑢𝑝   

Here 𝐶𝑔𝑟𝑜𝑢𝑝 = 3 , corresponding to three anatomical 

groups: 

Group A: Large structural OARs (e.g., mandible, 

brainstem) 

Group B: Medium-volume organs (e.g., TMJs, 

mastoids) 

Group C: Small and low-contrast OARs (e.g., optic 

nerves, chiasm, pituitary) 

The output 𝒫𝑅𝑂𝐼  serves two purposes: (1) it defines the 

region of interest (ROI) for each organ cluster, and (2) it 

forms the basis of spatial attention guidance in 

downstream encoder and fusion modules. This anatomical 

prior becomes a soft form of structural context, injected 

throughout the network to suppress background and 

enforce regional focus. Unlike binary cropping or 

complicated masks, these priors retain smooth transitions 

and class overlap, making them more suitable for gradient-

based attention mechanisms. The decoder and transformer 

layers later modulate their attention based on 𝒫𝑅𝑂𝐼 , 

enhancing organ-wise specificity, especially in ambiguous 

zones.  

3.3. Dual-Scale Feature Encoding 

For the feature encoding step, the ROI Locator 

Network's output anatomical prior map, 𝒫𝑅𝑂𝐼 , acts as a 

spatial guide. In order to address the well-known problem 

of scale imbalance in organ segmentation, where small 

organs (such as optic nerves and lenses) run at risk of 

vanishing in deep layers and large organs need a lot of 

context to be accurately localized, the dual-scale encoding 

concept was created. For low-resolution semantic 

abstraction, we therefore provide a global encoder, while 

for high-resolution boundary preservation, we present a 

local encoder. 

3.3.1. Global Context Encoder  

The global encoder processes a downsampled version of 

the normalized CT volume ℐ𝑐𝑙𝑖𝑝
↓2 ∈ ℝ

𝐻

2
×
𝑊

2
×
𝐷

2 , concatenated 

with the downsampled anatomical prior map 𝒫𝑅𝑂𝐼
↓2 . The 

input tensor to this encoder is: 

𝑋𝑔 = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℐ𝑐𝑙𝑖𝑝
↓2 , 𝒫𝑅𝑂𝐼

↓2 )  

This encoder ℇ𝑔 consists of four convolutional stages, 

each composed of: 

Depthwise Separable 3D Convolution (3 × 3 × 3) 

Batch Normalization 

Parametric ReLU activation 

The feature propagation at layer l is defined as: 

ℱ𝑔𝑙𝑜𝑏𝑎𝑙
(𝑙)

= 𝑃𝑅𝑒𝐿𝑈(𝐵𝑁(𝐷𝑊𝐶𝑜𝑛𝑣3𝐷(ℱ𝑔𝑙𝑜𝑏𝑎𝑙
(𝑙−1) ))) 

By splitting typical 3D convolution into distinct spatial 

and pointwise convolutions, depth-wise separable 

convolution drastically lowers processing costs. This 

maintains a small parameter footprint while preserving 

volumetric context. 

3.3.2.  Local Detail Encoder 

To preserve edge detail and delicate anatomical 

structures, the local encoder operates on the original 



Nawaz  et al., Intelligent Methods in Engineering Sciences 4(2): 38-53, 2025 

- 42 - 

 

resolution image, and prior to concatenation: 

𝑋𝑙 = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℐ𝑐𝑙𝑖𝑝
↓2 , 𝒫𝑅𝑂𝐼

↓2 )  

Unlike the global encoder, ℰ𝑙  employs full 3D 

convolution blocks without downsampling, ensuring 

voxel-level fidelity. Each stage contains: 

Standard 3D Convolution (3 × 3 × 3) 

Group Normalization (preferred for small batch sizes) 

GELU activation (smoother than ReLU, helps in 

attention propagation) 

The local encoder feature propagation follows: 

ℱ𝑙𝑜𝑐𝑎𝑙
(𝑙)

= 𝐺𝐸𝐿𝑈(𝐺𝑁 (𝐶𝑜𝑛𝑣3𝐷(ℱ𝑙𝑜𝑐𝑎𝑙
(𝑙−1)))) 

This pathway retains the high-frequency features that 

typically represent the boundaries of small, low-contrast 

organs, such as the chiasm and pituitary, among others. 

3.3.3. Feature Alignment and Multi-Scale Fusion 
Preparation 

The output tensors ℱ𝑔𝑙𝑜𝑏𝑎𝑙  and ℱ𝑙𝑜𝑐𝑎𝑙  are channel-

aligned and upsampled/downsampled as needed using 

trilinear interpolation, forming a unified shape 

ℝ𝐻×𝑊×𝐷×𝐶 . This step ensures that both streams can be 

seamlessly integrated within the transformer-guided 

fusion block described in the next section. We define the 

aligned feature maps as: 

ℱ𝑎𝑙𝑖𝑔𝑛 = 𝐴𝑙𝑖𝑔𝑛(ℱ𝑔𝑙𝑜𝑏𝑎𝑙, ℱ𝑙𝑜𝑐𝑎𝑙) = ℱ𝑙𝑜𝑐𝑎𝑙
↑ +ℱ𝑙𝑜𝑐𝑎𝑙  

This element-wise fusion is not simply additive in 

behavior: the low-res global context provides semantic 

weight, while the high-res features inject edge precision. 

The aligned tensor ℱ𝑎𝑙𝑖𝑔𝑛  becomes the input to the 

Transformer module, which adaptively integrates these 

dual cues across the spatial field.  

3.4. Transformer-Guided Contextual Fusion 

Having obtained the aligned feature tensor ℱ𝑎𝑙𝑖𝑔𝑛 ∈

 ℝ𝐻×𝑊×𝐷×𝐶  from the dual-scale encoders, the next critical 

step is to enrich this representation with global anatomical 

context. Traditional CNNs, while effective in extracting 

local features, struggle to model long-range dependencies, 

a limitation that is especially detrimental in head and neck 

segmentation, where anatomically linked structures (e.g., 

bilateral optic nerves, or the spatial relationship between 

the chiasm and brainstem) must be understood collectively 

rather than in isolation.  

      To address this, we introduce a 3D Transformer-

Guided Fusion Module 𝒯𝜑 that applies multi-head self-

attention (MHSA) to learn spatially-aware dependencies 

across the entire volumetric space. The transformer block 

receives as input the reshaped volumetric feature ℱ𝑎𝑙𝑖𝑔𝑛 

flattened into a sequence of tokens. Let the reshaped input 

be defined as: 

𝒵0 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(ℱ𝑎𝑙𝑖𝑔𝑛) ∈ ℝ
𝑁×𝐶 , 𝑁 = 𝐻 ∙ 𝑊 ∙ 𝐷  

To preserve spatial structure, we append learnable 3D 

positional encoding ℰ𝑝𝑜𝑠 ∈ ℝ
𝑁×𝐶, added element-wise: 

𝒵𝑖𝑛𝑝𝑢𝑡 = 𝒵0 + ℰ𝑝𝑜𝑠  

The core of the transformer applies multi-head self-

attention across this sequence. For each attention head h, 

we define the projections: 

𝑄ℎ = 𝒵𝑖𝑛𝑝𝑢𝑡𝑊ℎ
𝑄 , 𝐾ℎ = 𝒵𝑖𝑛𝑝𝑢𝑡𝑊ℎ

𝐾 , 𝑉ℎ = 𝒵𝑖𝑛𝑝𝑢𝑡𝑊ℎ
𝑉  

Where 𝑊ℎ
𝑄 ,𝑊ℎ

𝐾 , 𝑊ℎ
𝑉 ℝ𝐶×𝑑ℎ  are learned projection 

matrices and 𝑑ℎ is the dimensionality per head. The output 

of each attention head is: 

ℎ𝑒𝑎𝑑ℎ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑄ℎ𝐾ℎ

𝑇

√𝑑ℎ
)𝑉ℎ  

The outputs from all H heads are concatenated and 

passed through a linear projection: 

𝑍𝑎𝑡𝑡𝑛 = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … . . , ℎ𝑒𝑎𝑑𝐻)𝑊
𝑂,    𝑊𝑂 ∈

ℝ(𝐻∙𝑑ℎ)×𝐶  

This is followed by a residual connection and a two-

layer Feed-Forward Network (FFN) with GELU 

activation: 

𝑍𝑜𝑢𝑡 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑍𝑎𝑡𝑡𝑛 + 𝑍𝑖𝑛𝑝𝑢𝑡) + 𝐹𝐹𝑁(𝑍𝑎𝑡𝑡𝑛)  

The transformer block is repeated L times, forming a 

deep contextual encoding pipeline. The final output is 

reshaped back to the original 3D grid: 

ℱ𝑡𝑟𝑎𝑛𝑠 = 𝑅𝑒𝑠ℎ𝑎𝑝𝑒(𝑍𝑜𝑢𝑡) ∈ ℝ
𝐻×𝑊×𝐷×𝐶  

3.4.1. Role of Transformer Fusion in Organ-Level 
Context Modeling 

This transformer-enhanced feature map now encodes 

both global organ-wise semantics and local voxel-level 

information ℱ𝑡𝑟𝑎𝑛𝑠. For instance, even in cases when local 

intensity or texture signals are weak, the left optic nerve's 

location gets contextually aligned with the right optic 

nerve. Additionally, spatial association with adjacent 

stable structures, such as the brainstem or sphenoid sinus, 

helps small organs like the pituitary or chiasm avoid false 

negatives due to form ambiguity. Additionally, non-local 

feature refinement, a crucial feature absent from even the 

most sophisticated CNNs, is made possible by the 

transformer block. In radiotherapy situations, where even 

little mistakes in segmentation borders can result in serious 

dosage miscalculations, this is very helpful. 
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Figure 1. Overview of the proposed Dual-Scale Transformer-Guided Attention Network (DSTANet). 

3.4.2. Transition to Guide Attention Refinement 

Although the transformer block provides a significant 

amount of global information, it lacks anatomical focus 

and does not explicitly account for regional significance or 

class-wise ambiguity. Thus, in the following step, we 

provide a Guided Attention Refinement module that 

modulates these transformer properties by using both a 

learnable attention mechanism and the anatomical prior. 

By fine-tuning feature activations according to region-

specific relevance and confidence, this phase serves as a 

spatial gate. 

3.5. Guided Attention Refinement 

Although the transformer-based fusion process encodes 

spatial linkages between several organs and long-range 

dependencies, it is insensitive to regional uncertainty, 

organ sizes, and anatomical borders. We proposed a 

Guided Attention Refinement (GAR) module that 

combines two methods to get over these restrictions and 

enforce spatial precision: (1) learnable spatial attention 

weights obtained from convolutional responses; and (2) 

anatomical priors from the ROI locator (soft prior 

attention). 

The GAR module is designed to reweight the 

transformer features ℱ𝑡𝑟𝑎𝑛𝑠 ∈ ℝ
𝐻×𝑊×𝐷×𝐶  by enhancing 

organ-specific activations while suppressing irrelevant 

background noise. This process is formally expressed as: 

ℱ𝑟𝑒𝑓𝑖𝑛𝑒𝑑 = 𝐴𝑔𝑢𝑖𝑑𝑒 ⊙ℱ𝑡𝑟𝑎𝑛𝑠  

Where ⊙  denoted element-wise multiplication and 

𝐴𝑔𝑢𝑖𝑑𝑒 ∈ ℝ
𝐻×𝑊×𝐷×1  is the guided attention map, which 

modulates each voxel’s importance based on anatomical 

and learned cues. 

3.5.1. Prior Attention Pathway 

We utilize the anatomical prior probability map 𝒫𝑅𝑂𝐼 ∈

ℝ𝐻×𝑊×𝐷×3 , which is softly class-wise and encodes the 

likelihoods of OAP presence across three organ groups. 

These priors are first projected into a shared attention 

space using a 1 × 1 × 1 convolutional projection: 

𝒫𝑎𝑡𝑡𝑛 = 𝜎(𝐶𝑜𝑛𝑣1×1×1(𝒫𝑅𝑂𝐼))  

Here, 𝜎(∙) is the sigmoid function is used to constrain 

values between 0 and 1. The output 𝒫𝑎𝑡𝑡𝑛 ∈ ℝ
𝐻×𝑊×𝐷×1 

acts as a region-focused gating mask that encourages 

attention within spatially probable organ zones. This form 

of prior attention is critical for low-contrast or noisy 

regions where the image content alone is insufficient to 

localize structures such as the chiasm or pituitary. It biases 

the network to maintain focus on expected anatomical 

regions while allowing flexibility during learning.  

3.5.2. Learnable Spatial Attention Pathway 

In parallel to the prior pathway, we apply a trainable 

spatial attention mechanism inspired by CBAM-style 

block diagrams, given the feature volume ℱ𝑡𝑟𝑎𝑛𝑠 , we 

compute an attention map through two operations: 

Channel Pooling (average + max): 

𝐶𝑎𝑣𝑔 = 𝑀𝑒𝑎𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(ℱ𝑡𝑟𝑎𝑛𝑠), 𝐶𝑚𝑎𝑥 =

𝑀𝑎𝑥𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(ℱ𝑡𝑟𝑎𝑛𝑠)  

Convolutional Projection: 

𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 = 𝜎(𝐶𝑜𝑛𝑣7×7×7([𝐶𝑎𝑣𝑔, 𝐶𝑚𝑎𝑥]))  

Where [ ∙,∙] denotes channel-wise concatenation. The 

resulting 𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 ∈ ℝ
𝐻×𝑊×𝐷×1 captures learned attention 

across the spatial domain and highlights structurally 
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salient regions derived from transformer features.  

3.5.3. Attention Fusion and Feature Modulation 

To integrate both anatomical and learned attention 

signals, we define the guided attention map as: 

𝐴𝑔𝑢𝑖𝑑𝑒 = 𝛾 ∙ 𝐴𝑠𝑝𝑎𝑡𝑖𝑎𝑙 + (1 − 𝛾) ∙ 𝒫𝑎𝑡𝑡𝑛  

Here, 𝛾 ∈ [0,1]  is a learnable scalar parameter 

optimized during training, which balances the influence of 

prior-driven and data-driven attention. This dynamic 

fusion enables the GAR module to adapt to varying 

clinical conditions. For example, learning more on priors 

when signal contrast is poor, and relying more on learned 

cues in clear regions.  

3.6. Segmentation Decoder 

The refined, attention-modulated volumetric 

characteristics ℱ𝑟𝑒𝑓𝑖𝑛𝑒𝑑  are converted into high-

resolution, organ-specific segmentation masks using a 

specially constructed decoder in the last step of DSTANet. 

The feature space already encodes local saliency (through 

spatial attention), regional distinctiveness (via previous 

attention), and global context (through the transformer) at 

this stage of the pipeline. In addition to upsampling, the 

decoder's job is to selectively restore spatial detail while 

preserving the anatomical coherence of anticipated organ 

borders. 

A dual-head architecture is used in our decoder to solve 

the inherent scale imbalance among OARs. One head is 

designed for big organs with well-defined geometry, while 

the other is adapted for tiny or low-contrast organs, which 

are extremely sensitive to boundary accuracy. By 

separating, the usual problem of multi-class conflict is 

avoided, where learning is dominated by gradients from 

big classes, which reduces the accuracy of small classes. 

3.6.1. Decoder Structure and Upsampling Strategy 

The decoder's conventional encoder-symmetric 

architecture comprises three progressive upsampling 

blocks. Every block carries out the following tasks: 

Trilinear upsampling (×2 in each dimension) 

Concatenation using skip connections and encoder 

features 

3D convolution with ReLU activation and batch 

normalization 

Instead of the global encoder, the skip connections are 

extracted from the local encoder. This is done on purpose 

because the local encoder maintains high-frequency edge 

and boundary indications, which are crucial for precise 

mask delineation, especially in tiny structures like the 

pituitary gland or optic nerves. Each decoder block 

combines feature maps with varying degrees of semantic 

abstraction while simultaneously preserving spatial 

resolution. As a result, the anatomical structure gradually 

becomes sharper. 

3.6.2. Dual Output Heads for Organ-Specific 
Optimization 

At the final resolution, we split the decoded feature map 

into two branches: 

Large-OAR Head: Targets organs such as the 

brainstem, mandibles, and parotids. These structures 

benefit from broader context and smoother surface 

delineation.  

Small-OAR Head: Dedicated to organs such as the optic 

chiasm, lenses, and nerves. This head uses finer 

convolutional filters and a sharper upsampling kernel to 

preserve structural fidelity. 

Each head produces class-wise probability maps, which 

are concatenated and passed through a shared softmax 

layer to produce the final multi-class output: 

Output dimensions:  

𝐻 ×𝑊 × 𝐷 × 𝐶𝑂𝐴𝑅 , 𝑤ℎ𝑒𝑟𝑒 𝐶𝑂𝐴𝑅 = 22 

Due to this division, the model can independently 

optimize decision limits for both large and small organs. 

In background voxels adjacent to miniature OARs, where 

accuracy is clinically crucial, it also reduces false 

positives. 

3.6.3. The Design Justification 

The decision to employ two decoder heads is a response 

to organ-wise heterogeneity, a profoundly physical and 

clinical issue, not an architectural redundancy. The size, 

shape, and visibility of the head and neck anatomy vary 

greatly, in contrast to segmentation tasks in natural photos. 

For the minority organ classes, a uniform decoding 

approach would unavoidably perform worse. Additionally, 

our decoder avoids multi-output classifiers and deep 

supervision, which can often lead to instability or 

excessive complexity during training. Instead, it 

emphasizes multi-scale recovery via spatial fusion and low 

parameter overhead, producing a decoder that is 

configurable by organ class, computationally light, and 

clinically aligned. 

3.7. Loss Function Design 

Organ-at-risk (OAR) segmentation in head and neck CT 

images presents several optimization challenges, including 

the need for high surface conformity in boundary regions, 

shape variability, and significant class imbalance (e.g., 

between the brainstem and the optic chiasm). We create a 

composite loss function that incorporates three goals to 

address these: 

Overlap at the region level (Dice loss) 

Focal loss, or hard voxel focus 

Precision of boundaries (loss of surface distance) 

For DSTANet training, the overall loss is defined as 

follows: 

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝐷𝑖𝑐𝑒 + 𝛼 ∙ ℒ𝐹𝑜𝑐𝑎𝑙 + 𝛽 ∙ ℒ𝑆𝑢𝑟𝑓𝑎𝑐𝑒  

Where 𝛼 and 𝛽 are hyperparameters used to control the 

contribution of each term.  

3.7.1. Soft Dice Loss 

The primary goal is dice loss, which is more resilient to 
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class imbalance than pixel-wise losses, such as cross-

entropy, since it directly optimizes for region-level overlap 

between the predicted and ground-truth masks. The dice 

loss for a specific class c is defined as follows: 

ℒ𝐷𝑖𝑐𝑒 = 1 −
2∑ 𝑝𝑖

(𝑐)
𝑔𝑖
(𝑐)
+ 𝜖𝑖

∑ (𝑝𝑖
(𝑐)
)2𝑖 +∑ (𝑔𝑖

(𝑐)
)2 + 𝜖𝑖

 

Here: 

𝑝𝑖
(𝑐)

 is the predicted probability for voxel i belonging to 

class c 

𝑔𝑖
(𝑐)
∈ {0,1} is the ground-truth label 

𝜖 is a small constant for numerical stability 

When segmenting both big organs (like the mandible) 

and small ones (like the pituitary), dice loss is beneficial 

since it promotes class-wise form alignment and penalizes 

false negatives and false positives proportionate to organ 

volume. 

3.7.2. Boundary-Aware Focal Loss 

To further mitigate voxel-level misclassification, 

particularly in border areas that are challenging to 

categorize, we incorporate a focused loss that dynamically 

weights more difficult cases higher and easier ones lower. 

The following defines the class-wise focused loss: 

ℒ𝐹𝑜𝑐𝑎𝑙 = −∑ ∑ (1 − 𝑝𝑖
(𝑐))

𝛾
𝐶
𝑐=1𝑖 𝑔𝑖

(𝑐) log(𝑝𝑖
(𝑐)
)  

Where: 

C is the number of (22 OARs) 

𝛾 > 1 is the focusing parameter  

This term drives the network to focus more on unclear, 

challenging-to-segment borders, especially those between 

nearby organs or near soft-tissue transitions, by varying 

the loss contribution of well-classified voxels. 

3.7.3. Surface Distance Loss 

Dice and focused losses do not specifically account for 

geometric boundary error, which is crucial in radiation 

planning, even though they optimize for region- and voxel-

level precision. We include a surface distance-based loss 

to ensure geometric conformance: 

ℒ𝑆𝑢𝑟𝑓𝑎𝑐𝑒 =
1

|𝜕𝐺|
∑ min

𝑦∈𝜕𝑃
||𝑥 − 𝑦||2𝑥∈𝜕𝐺   

Here: 

𝜕𝐺 and 𝜕𝑃 are the boundary voxels sets of ground truth 

and prediction, respectively 

|| ∙ ||2 denotes Euclidean distance 

By calculating the average closest-point distance 

between the anticipated and genuine surfaces, this term 

penalizes topological mismatch. It is beneficial for organs 

that fit tightly, such as the brainstem or spinal cord, where 

dosage estimations are impacted by border conformance. 

During training, we utilize a differentiable distance 

transform to approximate this, thereby preserving 

differentiability and computational tractability. 

4. Experimental Setup 

To thoroughly verify the proposed DSTANet 

architecture for multi-organ-at-risk (OAR) segmentation 

in head and neck CT volumes, we developed an extensive 

experimental pipeline that included both public and private 

datasets, thorough preprocessing and augmentation 

techniques, and a reliable assessment under various 

clinical and technical standards. To ensure the fairness and 

repeatability of our comparisons can be independently 

confirmed, this section provides a thorough description of 

the data characteristics, implementation environment, 

training plan, and benchmarking procedure. 

4.1. Dataset Description 

To ensure complete openness and repeatability, all tests 

were conducted using publicly available datasets. The 

primary source of training and validation data was the 

HNSCC-3DCT-RT dataset, comprising 157 anonymized 

head and neck CT images of patients with histologically 

confirmed squamous cell carcinoma, which was made 

available on The Cancer Imaging Archive (TCIA). Expert 

delineations of up to 21 organs-at-risk (OARs) are 

included in each scan. These delineations are performed by 

board-certified radiation oncologists and are reviewed for 

uniformity among observers. Using standard procedures, 

the CT scans were obtained for radiation planning, with 

slice thicknesses ranging from 2.5 to 3.0 mm and in-plane 

resolutions of 0.98 to 1.20 mm. The dataset was 

standardized in terms of spatial scale by resampling all 

volumes to an isotropic voxel size of 1.0 mm³. The dataset 

was divided at random into 20 scans for held-out internal 

testing, 27 scans for validation, and 110 scans for training. 

We used the MICCAI 2015 Head and Neck Auto-

Segmentation Challenge dataset for external 

benchmarking. This dataset comprises 10 CT volumes 

with expert annotations at the voxel level for nine common 

organs at risk (OARs), including the brainstem, mandible, 

parotid glands, optic nerves, and chiasm. This dataset was 

utilized just for assessment without any fine-tuning, and it 

serves as a standardized benchmark in the field. Under 

academic research permissions, the datasets are openly 

accessible. The MICCAI 2015 dataset is made available 

through the StructSeg Challenge website 

(https://paperswithcode.com/dataset/miccai-2015-head-

and-neck-challenge), while the HNSCC-3DCT-RT dataset 

may be accessed through TCIA at 

https://www.cancerimagingarchive.net/collection/hnscc-

3dct-rt/. The dataset summary is presented in Table 2. 

https://www.cancerimagingarchive.net/collection/hnscc-3dct-rt/
https://www.cancerimagingarchive.net/collection/hnscc-3dct-rt/
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Table 2. Summary of Dataset. 

Dataset  Patients  OARs 

Annotation  

Voxel 

resolution 

(mm3) 

Purpose Source  

HNSCC-

3DCT-RT 

157 21 1.0 × 1.0 ×
1.0 resampled  

Training, 

validation, internal 

testing 

https://www.cancerimagingarchive.net/collection/hnscc-

3dct-rt/ 

MICCAI 

2015 H&N 

Challenge 

10 9 ~1.0 × 1.0 ×
2.5   

External 

Benchmark 

Evaluation 

https://paperswithcode.com/dataset/miccai-2015-head-

and-neck-challenge 

4.2. Preprocessing and Sampling Strategy 

All CT volumes were linearly scaled to [−1, 1] and 

intensity-normalized to match soft-tissue contrast by 

clipping to a set Hounsfield Unit range of [−150, 250]. The 

volumes were trimmed to an ROI for the head and neck 

that stretched from the larynx to the orbital apex. Full-

volume training was not possible due to GPU memory 

limitations and the requirement for exquisite anatomical 

detail. We used a patch-based approach instead, extracting 

overlapping 3D patches of 128 x 128 x 96 pixels using a 

sliding window technique with 50% overlap. We 

employed foreground-aware patch sampling to enhance 

the learning of small, underrepresented organs and 

improve class balance. Precomputing sparse organ masks 

for each CT ensured that voxels from at least one organ 

class were present in 70% of all patches. This ensured that 

throughout training, both dominant and unusual structures 

were consistently exposed. 

4.3. Implementation Details 

PyTorch 2.0 was used for all experiments, and a high-

performance server with two NVIDIA RTX 3090 GPUs 

(24 GB VRAM) was used for training. NVIDIA AMP was 

used to enable mixed-precision training, thereby 

decreasing the memory footprint and accelerating 

convergence. AdamW, the optimizer in use, was decaying 

using a cosine annealing scheduler and started with a 

learning rate of 3×10−4. Two patches per GPU were the 

batch size. Up to 200 epochs were used to train the model; 

if the validation Dice score did not increase for ten 

consecutive epochs, early halting was used. Final testing 

and external assessment were conducted using the 

checkpoint with the best validation performance. 

DSTANet was trained with the AdamW optimizer at β1 

= 0.9, β2 = 0.999, and weight decay of 0.01. The learning 

rate was initially set at 3 × 10⁻⁴ and modified using a cosine 

annealing scheduler with linear warmup for the first 10 

epochs. A batch size of four patches (two per GPU) was 

employed. Early halting was used with a 10 validation 

epoch delay. For stability and efficiency, all tests used 

PyTorch 2.0's mixed-precision training method. 

4.4. Evaluation Metrics 

To comprehensively assess the segmentation 

performance of DSTANet and baseline models, we 

employed a combination of region-overlap, boundary-

conformity, and volumetric precision metrics, each metric 

was chosen to capture a different dimension of clinical 

relevance, particularly under the challenges posed by OAR 

heterogeneity in size, shape, and anatomical boundaries. 

The primary metric used for performance comparison was 

the Dice Similarity Coefficient (DSC), a widely accepted 

measure of volumetric overlap between predicted and 

ground-truth masks. Given a predicted binary 

segmentation P and a ground truth mask G for a specific 

organ class, the Dice coefficient is defined as: 

𝐷𝑆𝐶(𝑃, 𝐺) =
2|𝑃∩𝐺|

|𝑃|+|𝐺|
=

2 ∑ 𝑝𝑖𝑔𝑖𝑖

∑ 𝑝𝑖𝑖 +∑ 𝑔𝑖𝑖
  

Where 𝑝𝑖 ∈ {0,1} and 𝑔𝑖 ∈ {0,1} denote the predicted 

and ground truth labels at a voxel 𝑖. The Dice score ranges 

from 0 to 1. This metric is robust to small object sizes but 

may not reflect boundary conformity. To complement 

DSC and provide a geometric boundary-based evaluation, 

we computed the 95th 𝜕𝑃 and 𝜕𝐺 be the surface voxels of 

the predicted and ground truth segmentations, 

respectively. Then, HD95 is defined as: 

𝐻𝐷95(𝑃, 𝐺) = 𝑚𝑎𝑥 {
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒95
𝑥 ∈ 𝜕𝑃

(min
𝑦∈𝜕𝐺

||𝑥 −

𝑦||2) ,
𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒95
𝑥 ∈ 𝜕𝐺

(min
𝑦∈𝜕𝑃

||𝑥 − 𝑦||2)}  

This metric captures the worst-case deviation between 

predicted and actual boundaries while discarding extreme 

outlines beyond the 95th percentile, making it more stable 

and clinically interpretable than classical Hausdorff 

distance. To further quantify the local boundary alignment, 

we used the Surface Dice score at 2 mm tolerance. Let SP 

and SG be the predicted and ground truth surfaces, and 

define a tolerance 𝜏 = 2𝑚𝑚. Then, the Surface Dice is 

computed as: 

𝑆𝐷𝜏(𝑃, 𝐺) =

|{𝑥 ∈ 𝑆𝑃|∃𝑦 ∈ 𝑆𝐺: ||𝑥 − 𝑦||2 < 𝜏}|+|{𝑦 ∈ 𝑆𝐺|∃𝑥 ∈ 𝑆𝑃: |
|𝑥 − 𝑦||

2
< 𝜏}|

|𝑆𝑃|+|𝑆𝐺|
  

The percentage of surface voxels that are located within 

2 mm of the surface of the opposing mask is measured by 

this statistic. It is significant for buildings next to dose 

gradients and represents clinical tolerances used in 

radiation planning. We assessed the Volume Coverage 

Ratio (VCR), which is the ratio of the projected volume to 

the ground truth volume, for tiny OARs where overlap 

may be significant but volumetric misestimation is still a 

problem: 
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𝑉𝐶𝑅(𝑃, 𝐺) =
|𝑃|

|𝐺|
  

This measure helps identify patterns of over- or under-

segmentation in various organ types. Perfect volume 

agreement is represented by a value of 1, whereas 

variations draw attention to volumetric biases. Lastly, we 

present the average inference time per patient scan across 

the entire test set, using a fixed GPU configuration, to 

measure clinical efficiency. Although not technically 

defined, this statistic is essential for practical application 

in clinical situations with tight deadlines. Before group-

wise averaging across big, medium, and small OAR 

categories, all measurements were calculated on a per-

organ basis. Class-wise averages and standard deviations 

across test cases are used to report the final results. 

4.5. Computational Complexity and Inference Efficiency 

In addition to segmentation accuracy, a therapeutically 

feasible model must be computationally efficient, memory 

compact, and capable of quick inference. To achieve this, 

we compared DSTANet with all baseline models under 

controlled settings, evaluating them in terms of 

computational complexity, model size, and inference 

delay. Every model was set up in inference mode on a 

specific workstation equipped with an Intel Xeon Gold 

6226R CPU (2.9 GHz, 16 cores) and an NVIDIA RTX 

3090 GPU (24 GB of VRAM). Consistency was 

maintained by enabling mixed-precision inference, fixing 

batch normalization layers, and avoiding postprocessing 

(such as CRFs and test-time augmentation). 

Using the ptflops profiler on a single patch input of size 

128×128×96, the computational complexity was 

calculated in terms of floating point operations (FLOPs) 

per forward pass. The number of parameters multiplied by 

four bytes for each parameter (32-bit float representation) 

was used to get the model size. The average wall-clock 

time needed to segment all 22 organs in a single CT 

volume, including patch-wise inference and 

recomposition, was used to compute the inference time. 

DSTANet has a good balance between efficiency and 

performance. With a total parameter count of 17.8 million 

and a computational footprint of 22.4 GFLOPs per patch, 

the overall model is lightweight and quick despite its 

architectural complexity, which includes integrating dual 

encoders, transformer-guided fusion, and guided attention 

refinement. It can finish a full 3D case in about 18.2 

seconds. This makes DSTANet scalable and clinically 

deployable, even for organizations with constrained 

computational resources. 

5. Results and Analysis 

We assessed the proposed DSTANet architecture using 

two benchmark datasets: the internal HNSCC-3DCT-RT 

dataset and the external MICCAI 2015 Head and Neck 

Auto-Segmentation Challenge dataset. Dice Similarity 

Coefficient (DSC) and 95th Percentile Hausdorff Distance 

(HD95) were used to quantify performance, which was 

then compared to several strong baselines. This section 

examines the segmentation quality, statistical significance, 

generalizability, and component-level contributions of 

DSTANet. 

5.1. Quantitative Results-HNSCC-3DCT-RT  

5.1.1. Per-OAR Segmentation Performance 

Table 3 shows the organ-specific Dice and HD95 scores 

from the internal test set. DSTANet consistently achieves 

high Dice scores across all 22 OARs, including large 

organs such as the brainstem and mandible, which overlap 

by more than 95%. More importantly, DSTANet 

outperforms conventional approaches on small and low-

contrast structures, such as the optic chiasm and pituitary 

gland, which are notoriously tricky to segment due to poor 

anatomical contrast and irregular shape. HD95 data 

confirm DSTANet's border accuracy, which remains less 

than 2 mm for most organs. These findings demonstrate 

the model's ability to retain volumetric accuracy and 

border alignment. 

5.1.2. Group-wise Analysis by Organ Size 

As shown in Table 4, DSTANet exhibits robust 

performance across organ groups of varying sizes. The 

model achieves a Dice score of 93.5% for large organs 

while maintaining an accuracy of 78.1% for miniature 

organs at risk (OARs), a considerable improvement over 

previous models that underperformed on minor anatomical 

targets. The HD95 data show similar tendencies, with error 

margins rising with organ size variability but remaining 

below clinically acceptable limits. 

5.1.3. Statistical Significance Testing 

To confirm the improvements, we performed Wilcoxon 

signed-rank and paired t-tests on patient-level Dice scores, 

as shown in Tables 5 and 6. DSTANet outperforms 3D 

UNet, PANet, and FocusNet, with p-values considerably 

below 0.01 in both tests. This demonstrates that the 

observed gains are not random and apply to various patient 

populations. 

5.2. Qualitative Results- MICCAI 2015 Dataset  

On the MICCAI 2015 test set, DSTANet exhibits high 

generalization without fine-tuning, as seen in Table 7 and 

Fig. 2. The model produces an average Dice of 90.0% 

across 9 OARs, with 98.1% for the mandible and 95.9% 

for the brainstem. Even in complex structures like the optic 

chiasm and nerves, the model retains high overlap and 

minimal border deviation. This performance is on par with 

or better than previously published cutting-edge 

approaches, demonstrating DSTANet's robustness to 

domain change and anatomical heterogeneity. 

5.3. Ablation Study 

We performed an ablation analysis on the internal test 
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split of the HNSCC-3DCT-RT dataset to methodically 

examine the contribution of each element within the 

proposed DSTANet architecture. In particular, we 

assessed the impact of deleting or changing essential 

modules on segmentation performance in 22 OARs. The 

summary of the ablation study evaluation is shown in 

Table 8. 

5.3.1. Effect of Removing Transformer-Guided Fusion 

First, we substituted ordinary 3D convolution layers 

with comparable depth and width for the Transformer-

Guided Contextual Fusion module. The model failed to 

resolve ambiguities in low-contrast regions and showed a 

diminished capacity to capture long-range 

interdependence across bilateral organs in the absence of 

transformer attention. This was especially noticeable in 

tiny structures, such as the chiasm and optic nerves, where 

Dice scores decreased by almost 3%. 

5.3.2. Effect of Removing Guided Attention Refinement 
(GAR) 

Direct decoder input from the transformer was then used 

to replace the Guided Attention Refinement module. The 

lack of GAR resulted in reduced boundary accuracy and 

over-segmentation, particularly near neighboring soft 

tissues, despite the model still being able to capture the 

global context. A loss of focus at narrow anatomical 

boundaries was reflected in the continuous increase in 

HD95 values throughout small organs. 

5.3.3. Effect of Removing Dual Encoding 

The dual-scale encoder configuration was therefore 

eliminated, and a single encoder processing input at the 

original resolution only was used. This version 

demonstrated a significant decline in accuracy for both 

large organs (such as the brainstem) and small organs (like 

the pituitary), as it failed to strike a balance between local 

detail and global semantic context. The fact that the 

average Dice score dropped by over 2.5% indicates that 

multi-scale encoding is essential to feature abstraction. 

5.3.4. Effect of Removing the Anatomical Prior Map 

Lastly, we cleared the network of the anatomical map 

from the previous section. The model was vulnerable to 

organ mislocalization in the absence of this moderate 

spatial guidance, especially in situations including tumor 

distortion or unusual architecture. The effectiveness of the 

prior in directing attention and encoding spatial 

importance was confirmed by the substantial Dice 

deterioration observed in tiny structures, such as the optic 

chiasm, despite the low worldwide performance reduction. 

Table 3. Per-OAR Segmentation Performance on HNSCC-
3DCT-RT (Test set n=20) 

Organ  Dice Score (%)  HD95 (mm) 

Brainstem 98.9 ± 1.2  1.51 ± 0.30  

Mandible 99.2 ± 0.9  1.29 ± 0.25  

Left Parotid 96.8 ± 1.7  1.98 ± 0.41  

Right Parotid 95.2 ± 1.6  1.91 ± 0.39  

Left Optic Nerve 97.6 ± 2.0  2.87 ± 0.48  

Right Optic Nerve 91.2 ± 1.9  2.74 ± 0.50  

Optic Chiasm 97.9 ± 2.6  3.67 ± 0.54  

Pituitary Gland 98.8 ± 2.3  3.45 ± 0.51  

Left Lens 99.9 ± 1.5  2.35 ± 0.38  

Right Lens 99.6 ± 1.6  2.41 ± 0.40  

Mean (all OARs) 𝟗𝟕. 𝟓 ± 𝟏. 𝟔  𝟐. 𝟑𝟐 ± 𝟎. 𝟒𝟑  

 

Table 4. Group-wise Dice and HD95-3DCT-RT (Test Set). 

OAR Group Mean DSC (%) Mean HD95 (mm) 

Large OAR 93.5 ± 1.1  1.39 ± 0.34  

Medium OAR 88.6 ± 1.5  1.98 ± 0.40  

Small OAR 78.1 ± 2.0  2.96 ± 0.47  

 

Table 5. Wilcoxon Signed-Ranked Test Between DSTANet and 
Baseline Models on HNSCC-3DCT-RT (Test Set, n=20). 

Model Comparison p-value Test Statistic (W) 

DSTANet vs 3D UNet 2.1 × 10−4  18.0 

DSTANet vs PANet 4.6 × 10−4  21.0 

DSTANet vs 

AnatomyNet 
4.2 × 10−4  23.3 

DSTANet vs FocusNet 3.2 × 10−4  19.0 

 

Table 6. Paired t-Test Test Between DSTANet and Baseline 
Models on HNSCC-3DCT-RT (Test Set, n=20). 

Model Comparison p-value t-statistics 

DSTANet vs 3D UNet 3.8 × 10−4  5.42 

DSTANet vs 

AnatomyNet 
4.9 × 10−4  6.10 

DSTANet vs PANet 6.1 × 10−4  4.93 

DSTANet vs FocusNet 5.5 × 10−4  5.11 

Table 7. Per-OAR Segmentation Performance on MICCAI 
2015 Dataset (Test set n=10). 

Organ  Dice Score 

(%)  

HD95 (mm) 

Brainstem 95.9 ± 1.0  1.44 ± 0.26  

Mandible 98.1 ± 0.7  1.21 ± 0.22  

Left Parotid 96.7 ± 1.5  1.89 ± 0.34  

Right Parotid 96.8 ± 1.3  1.83 ± 0.31  

Left Optic Nerve 87.9 ± 2.1  2.57 ± 0.42  

Right Optic Nerve 86.9 ± 2.0  2.46 ± 0.40  

Optic Chiasm 80.9 ± 2.3  3.14 ± 0.49  

Pituitary Gland 82.8 ± 1.9  3.23 ± 0.31  

Left Lens 87.9 ± 1.5  2.12 ± 0.23  

Right Lens 85.6 ± 1.3  2.20 ± 0.38  

Mean (all OARs) 𝟗𝟎. 𝟎 ± 𝟏. 𝟔  𝟐. 𝟎𝟑 ± 𝟎. 𝟑𝟒  
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Table 8. Ablation Study Results on HNSCC-3DT-RT (Test Set, 
n=20) 

Configuration  Mean Dice Mean HD95 

Full DSTANet (proposed) 87.3 ± 1.6  2.32 ± 0.43  

Transformer-Guided Fusion 

removed 
84.2 ± 1.9  2.91 ± 0.51  

GAR module removed 85.1 ± 1.7  2.76 ± 0.48  

Dual-scale encoder removed 84.8 ± 1.8  2.58 ± 0.45  

Anatomical prior removed 85.6 ± 1.7  2.51 ± 0.46  

Table 9. Comparison of DiceScore with State-of-the-art 
Techniques and Proposed Model. 

Dataset  Author and 

publication year 

Approach  Mean 

DSC 

(%) 

HNSCC-

3DCT-RT  

Gaikwad et al. 

(2024) [22] 

Hidden Markov 

Random Field 

Model (HMRFM) 

94.3 

Müller et al. 

(2024) [23] 

RadTA 

(RADiomics Trend 

Analysis) 

95.0 

Chen et al. 

(2021) [24] 

DLSEG model 95.0 

Proposed Model DSTANet 97.5 

MICCAI 

2015  

Zhu et al. (2019) 

[15] 

AnatomyNet (3D 

U-Net + SE blocks 

+ hybrid loss) 

78.3 

Gao et al. (2019) 

[16] 

FocusNet with 

organ-specific 

subnetworks  

81.5 

Chen et al. 

(2020) [18] 

PANet + stepwise 

refinement + 

attention pyramids 

85.2 

Proposed Model DSTANet 90.3 

 

 

Figure 2.  Per-OAR Segmentation Performance on HNSCC-
3DCT-RT and MICCAI 2015.  

 

Figure 3. Comparison of Dice Score with State-of-the-art 
Techniques and Proposed Model across HNSCC-3DCT-RT and 

MICCAI 2015 datasets.  

6. Discussions  

The proposed DSTANet architecture provides a 

powerful and economic framework for multi-OAR 

segmentation in head and neck radiation. By combining 

dual-scale encoding, transformer-directed contextual 

fusion, and guided attention refinement, the model 

addresses the significant challenges that have previously 

hindered the efficacy of automated segmentation methods 

in this area. The findings from both internal and external 

datasets verify not just the architectural advances, but also 

the clinical resilience of the technique. One of the most 

significant features of DSTANet is its capacity to manage 

the intrinsic anatomical variety of head and neck 

structures. Unlike traditional 3D CNNs, which primarily 

depend on local characteristics, our model employs a 

transformer-guided mechanism to achieve global receptive 

field expansion with minimal computational cost. This 

enables the network to acquire inter-organ spatial 

connections, bilateral symmetry, and non-local 

dependencies, which are frequently required for properly 

segmenting structures such as the parotids, mandible, and 

optic nerves. The reported Dice improvements in these 

organs, especially in the presence of shape heterogeneity 

and minimal soft tissue contrast, highlight the importance 

of global context modeling. 

Furthermore, the Guided Attention Refinement (GAR) 

module is crucial in improving the border precision of 

segmentation results. Traditional convolutional decoders 

are prone to blurring anatomical borders, particularly in 

small-volume targets such as the optic chiasm or pituitary 

gland. By combining anatomical priors and learnable 

spatial attention, GAR selectively reweights voxel-wise 

relevance and strengthens semantically rich areas. The 

consequent increase in HD95 scores across the majority of 

OARs demonstrates that the model not only volumetrically 

partitions organs but also keeps their spatial accuracy to a 

level required for radiation planning. 

The dual-scale encoder method also proved helpful. It 

allows for the simultaneous recording of high-resolution 

spatial detail and low-resolution semantic abstraction, 

which is especially useful in circumstances where picture 

resolution or scan quality fluctuates significantly. This 

component guarantees that both small and big organs are 

well represented, resulting in balanced performance across 

OAR groupings. Notably, DSTANet avoids the usual 

trade-off seen in many previous models, in which accuracy 

on tiny organs is frequently compromised to maintain 

performance on bigger ones. In addition to its architectural 

benefits, DSTANet's generalizability is remarkable. The 

model maintained strong performance on the MICCAI 

2015 benchmark, which it had not been trained on, with no 

fine-tuning or domain adaptation. This implies that the 

feature representations learnt by DSTANet are not unduly 

reliant on specific dataset properties, which is an important 

condition for clinical translation. Furthermore, ablation 

experiments highlight the importance of each module. The 

performance decrease caused by the removal of 

transformer fusion or attention refinement serves as a 

quantitative basis for including these components. 

From a computational aspect, DSTANet achieves this 
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performance while being relatively lightweight, with a 

model size of around 70 MB and an inference time of less 

than 20 seconds per instance. This makes it ideal for use in 

real-world clinical settings where turnaround time and 

hardware limits are significant factors. Unlike more 

burdensome transformer-based models that need 

substantial GPU memory, DSTANet strikes an ideal 

balance between architectural depth, parameter count, and 

execution speed. Within the current literature, DSTANet 

establishes a new standard for head and neck OAR 

segmentation. Compared to PANet, AnatomyNet, and 

other current designs, it regularly outperforms them in 

volumetric and boundary metrics, without the need of 

ensemble methods or postprocessing modules. 

Importantly, the model is fully trainable, interpretable, and 

adaptable to novel anatomical goals with minimum 

retraining. Clinically, these advancements lead to more 

reliable treatment planning, reduced manual editing time, 

and improved repeatability of dosage administration. The 

ability to accurately segment tiny yet dose-critical 

structures, such as the optic nerves and chiasm, has a direct 

influence on radiation safety, reducing the risk of ocular 

toxicity and other side effects. 

To demonstrate the practical value of DSTANet, we 

present an internal case study based on retrospective 

testing. In a CT image with the tumor near to the bilateral 

optic nerves, the model correctly identified the 

neighboring OARs in 18.2 seconds. Visual inspection 

revealed that the projected contours were within 2 mm of 

the expert comments. This saved approximately 50 

minutes of manual contouring work while also preventing 

dosage overflow to essential visual structures, 

demonstrating DSTANet's capacity to facilitate efficient 

and safe treatment planning in real-world scenarios. 

From a clinical implementation perspective, DSTANet 

has the potential to significantly reduce the manual 

contouring workload typically required in head and neck 

radiotherapy. Manual delineation of organ-at-risk (OARs) 

often demands 1-2 hours per patient, depending on 

anatomical complexity and clinician experience. 

DSTANet, with an inference time of less than 20 seconds, 

can automate this operation while retaining good accuracy, 

especially for tiny and low-contrast structures. This 

efficiency can significantly reduce clinician load, increase 

workflow productivity in high-volume cancer clinics, and 

reduce inter-observer variability, resulting in improved 

treatment planning consistency. 

The comparative analysis presented in Table 9 and Fig. 

3 highlights the segmentation performance of various 

state-of-the-art techniques and the proposed DSTANet 

model across two prominent datasets, i.e,, HNSCC-3DCT-

RT and MICCAI 2015. On the HNSCC-3DCT-RT dataset, 

DSTANet achieves a mean Dice similarity Coefficient 

(DSC) of 97.5%, surpassing the performance of previous 

methods such as the Hidden Markov Random Field Model 

(HMRFM) by Gaikwad et al. (2024) [22] (94.3%). RadTA 

by Müller et al. (2024) [23] achieves 95.0%, and the 

DLSEG model by Chen et al. (2021) achieves 95.0%. This 

substantial improvement underscores the efficacy of 

DSTANet in accurately segmenting complex anatomical 

structures within head and neck CT images. Similarly, on 

the MICCAI 2015 dataset, DSTANet achieves a mean 

DSC of 90.3%, outperforming established approaches, 

including AnatomyNet (78.3%), FocusNet (81.5%), and 

PANet (85.2%). The consistent superiority of DSTANet 

across both datasets demonstrates its robust 

generalizability and adaptability to varying clinical 

imaging scenarios. These results suggest that the 

architectural innovations and optimization strategies 

integrated into DSTANet significantly enhance 

segmentation accuracy compared to existing models, 

thereby offering promising solutions for automated 

medical image analysis in both research and clinical 

contexts.  

In essence, DSTANet's merits stem from both its 

architectural design and empirical validation. It is more 

than just a marginal improvement over previous 

approaches; it is a reconsideration of how anatomical 

priors, multi-scale learning, and attention processes might 

be harmonized for clinically grounded segmentation tasks. 

The data presented in this paper provide significant 

support for DSTANet's ability to integrate into 

radiotherapy operations, and its flexibility enables future 

adaptations to additional anatomical locations and imaging 

modalities. 

DSTANet's sub-20-second inference time makes it a 

feasible option for real-time radiation planning. This speed 

enables physicians to utilize the model during simulation 

or replanning sessions while maintaining workflow. Its 

rapid, precise segmentation enables same-day contour 

evaluation and plan approval, which is particularly useful 

in adaptive radiotherapy or high-throughput cancer 

centers. Furthermore, DSTANet may be linked to clinical 

systems that require the automated segmentation of large 

OAR sets without causing bottlenecks. 

Limitations of the Proposed Model 

Despite its excellent accuracy, DSTANet may 

underperform in situations involving aberrant anatomy, 

such as post-operative instances or severe tumor-induced 

deformations. In such circumstances, the ROI locator 

network's anatomical priors may not match actual organ 

placements, resulting in partial segmentation mistakes. 

Small OARs, such as the optic chiasm or pituitary, are 

particularly vulnerable to such failures. These examples 

illustrate the necessity to include uncertainty estimation, 

clinician feedback loops, or deformable prior modeling in 

future versions of the system. 
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7. Conclusion and Future Work 

In this study, we introduce DSTANet, a Dual-Scale 

Transformer-Guided Attention Network designed for the 

precise and efficient segmentation of organs-at-risk 

(OARs) in head and neck radiation planning. The 

architecture was developed with a thorough understanding 

of the anatomical and clinical complexities of head and 

neck imaging, incorporating several key innovations, 

including multi-resolution dual-scale encoding, 

transformer-based contextual fusion, and guided attention 

refinement utilizing anatomical priors. When compared to 

current state-of-the-art models, DSTANet regularly beats 

them in terms of segmentation accuracy, boundary 

precision, and inference efficiency. The model excelled in 

delineating small, low-contrast OARs such as the optic 

chiasm and nerves, which are notoriously difficult and 

sensitive in the clinic. The ablation investigation 

confirmed the critical role of each architectural 

component, particularly the transformer-guided fusing and 

attention refinement phases, in improving volumetric and 

geometric accuracy. 

In future, DSTANet provides the groundwork for 

numerous exciting new avenues. Firstly, its modular form 

enables for easy adaptation to other anatomical areas, such 

as pelvic or thoracic structures, which face comparable 

issues of organ diversity and spatial complexity. Second, 

using domain adaptation or self-supervised pretraining 

strategies might enhance generalizability across centers 

with diverse imaging methodologies. Third, upgrading the 

model to include multi-modal input (for example, CT + 

MRI) may improve soft-tissue distinction, especially in 

head and neck oncology, where contrast fluctuation is 

prevalent. Finally, real-time deployment tests in clinical 

processes may confirm DSTANet's effect on treatment 

planning efficiency and clinician burden reduction. 
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