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 Metaheuristic algorithms are powerful methods used to solve large and complex optimization 
problems. Thanks to their flexibility, they provide effective results in various fields and also have 

an important place in security applications such as the Merkle-Hellman Knapsack Crypto System. 

Aquila Optimizer is an optimization algorithm inspired by the hunting behavior of aquilas. It 
provides fast and effective solutions to complex problems. In this study, Aquila Optimizer is 

discretized using taper-shaped transfer functions. Taper-shaped transfer functions help the 

algorithm obtain more precise and effective results by increasing its performance. Four BinAO 

versions obtained in this way were tested on the Merkle-Hellman Knapsack Cryptosystem. In the 

tests conducted for the cryptanalysis of "CAT" and "MACRO" messages, the B𝑖𝑛𝐴𝑂𝑇4 version 

achieved more successful results. Additionally, tests conducted with the algorithms in the literature 

clearly showed that the proposed algorithm is successful and effective. 
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1. INTRODUCTION 

Metaheuristic algorithms are powerful solution methods 

that are especially preferred for complex, large-scale 

optimization problems. These algorithms are used when 

classical deterministic methods fall short or when the 

solution space is extensive. They aim to achieve results 

close to the global optimum by exploring the solution 

space intuitively. The appeal of metaheuristic algorithms 

lies in their flexibility, capacity to adapt seamlessly to 

various types of problems, and efficiency in handling very 

large solution spaces [1]. Additionally, they are commonly 

employed in diverse fields such as logistics, production 

planning, route optimization, and machine learning. The 

Merkle-Hellman Knapsack Cryptosystem (MHKC) is an 

example of a problem where metaheuristic algorithms are 

applied. MHKC is critical for ensuring data security and 

enhancing the reliability of cryptographic protocols [2]. 

Furthermore, the large size of the solution space and the 

presence of numerous local minima necessitate the 

development of efficient optimization methods. Therefore, 

developing efficient and reliable solution methods for 

complex combinatorial problems like MHKC is crucial for 

real-world applications.  

Studies in the literature in this field are as follows: 

Abdel-Basset et al. derived a binary variant of the 

nutcracker optimization algorithm using two different 

families of transfer functions: S-shaped and V-shaped [3]. 

Then, this algorithm, whose search performance was 

improved by using the local search strategy, was used in 

the MHKC solution. Grari et al. presented a new variant of 

ant colony optimization in which two different search 

techniques are used in the MHKC solution [4]. Kantour 

and Bouroubi developed a parallel genetic algorithm 

adapted to efficiently explore the significantly large search 

space for MHKC [5]. Sikdar et al. cryptanalyzed the 

MHKC cipher using the Cuckoo Search Algorithm [6]. 

The proposed algorithm was distinguished by the 

following methods: population generation, fitness function 

evaluation, mutation, perturbation, and Lévy flight. Abdel-

Basset et al. employed eight well-known metaheuristic 

algorithms to assess the reliability of MHKC toward 

cryptanalysis assaults, employing knapsack sizes spanning 

from 8 to 32 bits [7]. Abdel-Basset et al. introduced a new 

version of the whale optimization algorithm for the 

cryptanalysis of MHKC [8]. This method converted 

continuous inputs to discrete values using the sigmoid 

function. A penalty function has been integrated into the 

evaluation function for suboptimal solutions. The 

solutions were improved via mutation. Sikdar et al. 

implemented the MHKC using Cuckoo Search, Grey Wolf 

Optimization, and Harris Hawk Optimization algorithms 

[9]. In the selected plaintext attack scenario, the best 

results were achieved with Harris Hawk Optimization. 
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Furthermore, the results outperformed the previously used 

Binary Firefly and Differential Evolution algorithms. 

Abdel-Basset et al. developed a new algorithm, called the 

Binary Hybrid Equilibrium Optimizer, for binary 

optimization problems[10]. The proposed method aims to 

accelerate convergence and avoid local minima by 

leveraging local search operators. The method is applied 

to three different problems: the 0–1 knapsack problem, 

feature selection, and the MHKC. The results demonstrate 

strong and competitive performance. Abdel-Basset et al. 

proposed the mantis search algorithm, differential 

evolution, and binary versions of quadratic interpolation 

methods to solve the 0–1 knapsack, multidimensional 

knapsack, and MHKC problems [11]. Experimental results 

demonstrate that the hybrid quadratic interpolation 

algorithm outperforms MHKC and other knapsack 

problems. 

In this study, the Aquila Optimizer, an effective 

algorithm originally designed for continuous problems, 

was adapted for binary use with four different Taper-shape 

transfer functions. This approach allowed for an 

examination of the effects of the transfer functions. 

Cryptanalysis of the "CAT" and "MACRO" messages was 

carried out, and the results obtained were evaluated. The 

contributions of the proposed algorithm to the literature 

can be listed as follows: 

• The Aquila Optimizer algorithm, developed for 

continuous problems, was binaryized and applied to 

the field of cryptanalysis for the first time; (during 

the preparation of this study, no research using AO in 

MHKC solving was found). 

• The effects of four different taper-shaped transfer 

functions on solution quality were experimentally 

evaluated by integrating them with the AO algorithm. 

• The performance of AO on the MHKC problem was 

analyzed, demonstrating its potential for 

cryptanalysis problems. 

• The method has been tested practically beyond the 

theoretical contribution with decryption applications 

for real messages ("CAT" and "MACRO"). 

The study is organized as follows. The second section 

introduces the basic concepts. The third section explains 

the proposed method, and the fourth section presents the 

experimental results. The fifth section discusses the 

results, and the sixth section offers a general assessment 

and recommendations for future research. 

2. Preliminaries 

2.1. Merkle–Hellman Knapsack Cryptosystem 

The rapid progress in communication technology in the 

last twenty years and the massive increase in information 

flow over the internet have made it necessary to ensure the 

confidentiality of the transmitted information. 

Cryptography is defined as the study of different 

techniques used to encrypt information, that is, to 

transform it into a state that cannot be read by unwanted 

persons during the communication between the sender and 

the receiver [12]. The Merkle-Hellman Knapsack 

Cryptosystem (MHKC) is one of the most widely 

recognized cryptosystems. In MHKC, an asymmetric 

public-key cryptosystem encrypts a message with a public 

key and decrypts it with a private key so only the recipient 

can read it [3, 13]. The following part offers a description 

of the encryption and decryption processes of this 

asymmetric cryptosystem, shown by a specific instance of 

the knapsack problem introduced by Merkle and Hellman 

[14] in 1978. 

Encryption 

Equation 1 converts a superincreasing knapsack series 

to a trapdoor knapsack sequence. 

𝐴 = 𝐴𝑖
′ × 𝑟 %𝑞         𝑖 = 1,2, … … … , 𝑛              (1) 

Figure 1 explains how the trapdoor knapsack sequence 

is produced for a given super increasing sequence with q 

and r values. 

 

Figure 1. The production of the trapdoor knapsack sequence 
[12] 

Once the trapdoor knapsack sequence, depicted in 

Figure 1, has been created, the public key (A) and private 

key (A', q, r) are ready to be used for encrypting and 

decrypting messages between the sender and receiver. This 

ensures the security of information transfer and maintains 

its confidentiality. For example, the encryption of the 

"CAT" message is done as given in Figure 2, and the 

encryption steps are as follows [12]: 

1. An 8-bit ASCII code is used to encode each character 

(𝑥𝑖 ,   𝑖 ∈  {1, 2, … , 8} ) 

2.  The encrypted text is generated by multiplying the 

bits associated with each character by its corresponding 

trapdoor element and adding the products. The encrypted 

text is calculated as  

∑  𝑎𝑖
′ × 𝑥𝑖

8
𝑖=0  . 

 

Figure 2. Encryption of the message "CAT" [12] 
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Decryption 

A message encrypted using the public key can only be 

decrypted by the recipient using the private key (A′, q, r). 

To achieve this, it is necessary to find which numbers 

correspond to 1 in the super-increasing knapsack sequence 

for each target total. The mentioned decryption steps are 

as follows [12]: 

1. For each target sum ci, the value pi is calculated 

according to Equation 2. 

𝑝𝑖 = 𝑐𝑖 ∗ 𝑟−1 𝑚𝑜𝑑 𝑞                                                 (2) 

        where 𝑝𝑖 is the ith character of the plaintext. 

2. Continue finding the largest integer smaller than 𝑝𝑖   

in the super-increasing knapsack sequence until you reach 

zero, as shown in Figure 3. 

3. The numbers that result in 𝑝𝑖   reaching zero are 

assigned a value of 1, but the other super-increasing 

knapsack numbers are assigned a value of 0. 

 

Figure 3.  The decryption of  (748, 512, 323) message [12] 

2.2. Aquila Optimizer (AO) 

In the Northern Hemisphere, aquilas are often seen as 

predatory birds.  Aquila catches prey with its quickness, 

strength, strong feet, and keen claws. The Aquila uses four 

hunting strategies, switching between them according on 

the situation. The hunting techniques consist of contour 

flying with a brief glide assault, high soaring with a 

vertical stoop, low flying with a gradual descent attack, 

and walking and grabbing prey [15]. Abualigah et al. 

presented the Aquila Optimizer in 2021 by modeling these 

hunting strategies [16]. This method is developed for 

continuous optimization problems and follows these steps: 

Initialization  

In AO, a population-based algorithm, the population is 

initialized stochastically, a practice that is common to 

numerous other metaheuristic algorithms. The algorithm 

generates a population of candidate solutions that are 

within the upper (𝑈𝑏) and lower (𝐿𝑏) bounds of the given 

problem during the initial phase. The position of each 

individual (𝑋𝑖,𝑗) within the population is determined by 

Equation 3. 

𝑋𝑖,𝑗 = 𝑟1 × (𝑈𝑏𝑗 − 𝐿𝑏𝑗) + 𝐿𝑏𝑗            𝑖 =

1, … . , 𝑛        𝑗 = 1, … . . , 𝑚                                         (3) 

where 𝑈𝑏𝑗  and 𝐿𝑏𝑗 are the upper and lower bound 

values for the 𝑗𝑡ℎ individual, 𝑟1 is a random number in the 

range [0, 1], and m is the number of decision variables and 

n is the number of individuals. The 𝑖𝑡ℎ  value of the 

decision variable is denoted by 𝑋𝑖. Equation 4 is employed 

to transition AO from exploration to exploitation, where 𝑡 

is the current iteration and 𝑇 is the total number of 

iterations. 

{
𝐸𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒       𝑖𝑓   𝑡 ≤

2

3
× 𝑇

𝐸𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑝ℎ𝑎𝑠𝑒               𝑒𝑙𝑠𝑒        
                 (4) 

 

Expanded exploration  

This initial phase ( 𝑋1 ) is constructed as shown in 

Equations 5 and 6, and it consists of the aquila flying high 

soar with the vertical stoop in order to identify the hunting 

region and choose the most attractive hunting location. 

𝑋1(𝑡 + 1) =  𝑋𝑏(𝑡) × (1 −
𝑡

𝑇
) + (𝑋𝑚𝑒𝑎𝑛(𝑡) − 𝑋𝑏(𝑡) × 𝑟2)   (5) 

𝑋𝑚𝑒𝑎𝑛(𝑡) =
1

𝑛
∑ 𝑋𝑖(𝑡)𝑛

𝑖=1       ∀𝑗 = 1, … . , 𝑚                          (6) 

In Equations 5 and 6, 𝑋𝑚𝑒𝑎𝑛  denotes the mean position 

of individuals, whereas 𝑋𝑏 signifies the position of the best 

individual in the population. 𝑟2  is a random number within 

the range [0, 1]. 

Narrowed exploration  

In the second phase (𝑋2), known as contour flight with 

a short glide attack, the aquila circles above the target prey, 

prepares the area, and strikes. The algorithm illustrates this 

strategy using the equations provided in Equation 7-14. 

𝑋2(𝑡 + 1) =  𝑋𝑏(𝑡) × 𝐿𝑒𝑣𝑦(𝐷) + 𝑋𝑅(𝑡) + (𝑦 − 𝑥) × 𝑟3    (7) 

In Equation 7, 𝑋𝑅 denotes the position of a randomly 

selected individual from the population, while 𝑟3 refers to 

a random real number within the range [0, 1]. D is the 

variable number, and Levy (D) represents the Levy flight 

distribution function outlined in Equations 8 and 9. 

𝐿𝑒𝑣𝑦(𝐷) = 𝑠 ×
𝑢×𝜎

|𝑣|
1
𝛽

                                      (8) 

𝜎 =
Γ(1+𝛽)×sin (

𝜋𝛽

2
)

Γ(
1+𝛽

2
)×β×2

𝛽−1
2

                                        (9) 

In these equations, s is a constant valued at 0.01. u and 

𝜎 are random variables inside the interval [0, 1]. β is a 

constant, with a value of 1.5. The variables x and y are used 

to generate the spiral configuration and are computed 

using Equations 10 and 11. U and ω are equal to 0.00565 

and 0.005, respectively. 𝜖 is a number ranging from 1 to 

20. 𝐷1 is an integer that varies from 1 to the length of the 

search space (𝑚). 



Gülnur Yıldızdan, Intelligent Methods in Engineering Sciences 4(2): 29-37, 2025 

- 32 - 

 

𝑥 = 𝜓 × sin (𝜃)                                                             (10) 

𝑦 = 𝜓 × cos (𝜃)                                   (11) 

𝜓 = 𝜖 + 𝑈 × 𝐷1                                          (12) 

𝜃 = −𝜔 × 𝐷1 + 𝜃1                                     (13) 

𝜃1 =
3×𝜋

2
                                          (14) 

Expanded exploitation  

Upon readiness to assault and having accurately 

identified the hunting location, the aquila descends 

vertically in preparation for a frontal attack during the third 

stage. The mathematical description of it, which is termed 

low flying with sluggish descending attack, is expressed in 

Equation 15. The equation employs random values ranging 

from 0 to 1 for 𝑟4 and 𝑟5. α and δ are constants, each set at 

a value of 0.1. 

𝑋3(𝑡 + 1) =  (𝑋𝑏(𝑡) − 𝑋𝑚𝑒𝑎𝑛(𝑡)) × 𝛼 − 𝑟4 + ((𝑈𝑏 −
𝐿𝑏) × 𝑟5 + 𝐿𝑏) × 𝛿       (15) 

Narrowed exploitation  

After reaching the prey in the fourth phase, the aquila 

initiates an assault from above, tracking the prey's 

random movements over the land. Equation 16 offers a 

mathematical depiction of the walking and grasping 

behaviors associated with prey. 

𝑋4(𝑡 + 1) =  𝑋𝑏(𝑡) × 𝑞𝐹 − (𝔤1 × 𝑋(𝑡) × 𝑟6) − 𝔤2 ×
𝐿𝑒𝑣𝑦(𝐷) + 𝑟7 × 𝔤1                                                      (16) 

In Equation 16, 𝑞𝐹 denotes the quality function and is 

computed in accordance with Equation 17. Equation 18 

represents 𝔤1 , which is employed to track prey during 

escape. 𝔤2 is used to track prey throughout an escape, from 

beginning to end. The value representing the aquila's flight 

slope is calculated using Equation 19 and exhibits a 

decline from 2 to 0. The variables 𝑟6, 𝑟7, and 𝑟8 are random 

values ranging from 0 to 1. 

𝑄𝐹 = 𝑡
2×𝑟7−1

(1−𝑇)2                                                   (17) 

𝔤1 = 2 × 𝑟8 − 1                                                  (18) 

𝔤2 = 2 × (1 −
𝑡

𝑇
)                                               (19) 

3. Proposed Method 

Aquila Optimizer (AO) is an effective algorithm for 

continuous optimization problems, but for binary 

optimization problems, the solution space needs to be 

discretized. Transfer functions perform this discretization 

by transforming continuous variables into specific binary 

values [17]. The transfer function transforms continuous 

values into values that can be represented in binary form, 

thus making AO adaptable to binary optimization 

problems. 

There are different transfer functions for discretization, 

one of which is the taper transfer function. The 

advantageous aspects of transfer functions compared to 

other transfer functions can be listed as follows [18]: 

• Due to the symmetry of the 𝑌-axis, it is more 

appropriate for the discretization of evolutionary 

algorithms compared to transfer functions without 

this characteristic. 

• On the intervals [−𝐴, 0] and [0, 𝐴], the transfer 

functions exhibiting smooth curvature transitions are 

superior to those with non-smooth curvature 

transitions. 

• Discrete evolutionary algorithms provide more 

benefits when the transfer function's domain matches 

the value range of an individual's component. 

The taper transfer function was implemented in this 

study as a result of the advantages mentioned above. In this 

way, the Aquila Optimizer was made more effective in 

binary optimization problems. Figure 4 presents taper-

shaped transfer functions and their graphics.  

 

Figure 4.  Taper-shaped functions and their graphics [18] 

In the binary search space, each dimension represents a 

segment of the bit sequence. For the MHKC problem, a 

value of "1" indicates that the relevant element is included 

in the encryption process, while a value of "0" indicates 

that it is not. The process of transforming the continuous 

search space into a binary structure suitable for the 

knapsack problem (binarization)—that is, determining the 

selection status of each element—is shown in Figure 5. 

This transformation is achieved through the thresholding 

function defined by Equation 20 [19]. In this way, the 

values in the continuous space are converted to a binary 

representation, making them suitable for the MHKC. 

𝑋𝑏𝑖𝑛𝑎𝑟𝑦 = {
1,      𝑖𝑓   𝐹(𝑎) > 𝑟𝑎𝑛𝑑
0,                  𝑒𝑙𝑠𝑒

                  (20)  

  

Figure 5. Example of a scheme for binarization 
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Figure 6. Flowchart of proposed method 

 

The proposed method's flowchart is illustrated in Figure 

6 to facilitate a more systematic and clear explanation of 

the algorithm's operation. 

4. Experimental Results 

4.1. Performance of BinAO on Merkle–Hellman 
Knapsack Cryptosystem 

This section tests the performance of the proposed 

versions of BinAO with integrated taper-shaped transfer 

functions on MHKC problems. The parameters of 𝐵𝑖𝑛𝐴𝑂 

are set with the following values: maximum number of 

iterations = 100 and population size = 20. The algorithm's 

parameter values were determined by referencing values 

frequently used in similar optimization problems in the 

literature. This approach ensures comparability of the 

obtained results with previous studies and a fair 

assessment of the effectiveness of the proposed method. 

Figure 7 shows the cipher text for the message "CAT" and 

each character's ASCII code [12]. An 8-bit sequence of 0s 

and 1s is used to encode each character. After the message 

is encrypted, the recipient receives the cipher text. MHKC 

encrypts and decrypts the "CAT" message as follows 

(Equation 21) [3]: 

𝐴′= [8 15, 29, 65, 125, 251] 

q = 507, r =10, 𝑟−1 = 355, 

A = {20, 30, 70, 150, 290, 143, 236, 482}                          (21) 

 

Figure 7. MHKC encryption of the message "CAT"[12] 

Table 1 presents comparative results for BinAO for the 

"CAT" message cryptosystem when different taper-shaped 

transfer functions are used. Algorithms were evaluated 

based on the results of five runs (Run#). In the table, 𝐼𝑁 is 
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the number of iterations needed to determine the accurate 

ASCII code for each character, while 𝑀_𝐼𝑁 represents the 

mean number of iterations per character. 𝑀_𝑡𝑖𝑚𝑒  gives 

the mean of the time taken for five runs. The results 

showed that B𝑖𝑛𝐴𝑂𝑇4  performs better overall. B𝑖𝑛𝐴𝑂𝑇4 

obtained the smallest 𝑀_𝐼𝑁 value for all characters. It also 

obtained a smaller value for 𝑀_𝑡𝑖𝑚𝑒 for two out of three 

characters. In other words, it was more successful in 

cryptanalyzing the character in fewer iterations and in less 

time. 

Table 1.  The "CAT" message cryptanalysis's results 

  Run_1 Run_2 Run_3 Run_4 Run_5   

Character  IN IN IN IN IN M_IN M_time 

C 

𝐁𝒊𝒏𝑨𝑶𝑻𝟏 21 5 1 91 4 24,4 0,0513 

𝐁𝒊𝒏𝑨𝑶𝑻𝟐 7 16 3 1 44 14,2 0,0209 

𝐁𝒊𝒏𝑨𝑶𝑻𝟑 1 50 1 1 2 11 0.0164 

𝐁𝒊𝒏𝑨𝑶𝑻𝟒 3 1 1 1 8 2,8 0,0052 

A 

𝐁𝒊𝒏𝑨𝑶𝑻𝟏 24 1 2 41 3 14,2 0,0255 

𝐁𝒊𝒏𝑨𝑶𝑻𝟐 1 5 1 3 5 3 0,0053 

𝐁𝒊𝒏𝑨𝑶𝑻𝟑 6 3 1 5 2 3,4 0,0066 

𝐁𝒊𝒏𝑨𝑶𝑻𝟒 6 2 2 4 1 3 0,0059 

T 

𝐁𝒊𝒏𝑨𝑶𝑻𝟏 3 3 5 2 21 6,8 0,0149 

𝐁𝒊𝒏𝑨𝑶𝑻𝟐 1 8 14 24 1 9,6 0,0207 

𝐁𝒊𝒏𝑨𝑶𝑻𝟑 1 2 9 11 4 5,4 0,0132 

𝐁𝒊𝒏𝑨𝑶𝑻𝟒 7 1 7 1 2 3,6 0,0111 

Secondly, in this section, the performance of BinAO 

versions in encrypting the "MACRO" message (8 bits) 

with MHKC, which is widely used in the literature [20], 

was examined. The cipher text for the message "MACRO" 

and the ASCII code of each character are illustrated in 

Figure 8. MHKC encrypts and decrypts the " MACRO " 

message as follows(Equation 22) [12, 21]: 

𝐴′ = {4,5,13,23, 48, 96, 193, 384} 

q = 776, r = 13, 𝑟−1 = 597 

A = {52, 65, 169, 299, 624, 472, 181, 336}           (22) 

 

Figure 8. MHKC encryption of the message "MACRO"[12] 

Table 2 presents comparative results for BinAO for the 

"MACRO" message cryptosystem when different taper-

shaped transfer functions are used. Upon examination of 

the results in the table, B𝑖𝑛𝐴𝑂𝑇4 in three characters and 

B𝑖𝑛𝐴𝑂𝑇3 in the remaining two characters have obtained a 

smaller 𝑀_𝐼𝑁 value. The optimum time was achieved by 

B𝑖𝑛𝐴𝑂𝑇1  in two characters, B𝑖𝑛𝐴𝑂𝑇3  in two characters, 

and B𝑖𝑛𝐴𝑂𝑇4  in the remaining one character when 

evaluated according to the 𝑀_𝑡𝑖𝑚𝑒 criterion. In the event 

that a comprehensive analysis is carried out, it is 

determined that the B𝑖𝑛𝐴𝑂𝑇4 version is more successful 

than the other versions. This success is due to the fact that 

the T4 transfer function has a smoother transition curve 

and provides a more balanced exploration and exploitation 

process in the search space compared to other functions 

that cannot suppress extreme values. 

Ultimately, this section presents a comparison of 

BinAO (i.e., the most successful B𝑖𝑛𝐴𝑂𝑇4 version results) 

with the algorithms that are currently available in the 

literature. For this, the results of the algorithms in the study 

of Abdel-Basset et al. [12] were taken. The comparison is 

made with the modified version of WOA (MWOA) [12], 

binary firefly algorithm (FA) [21], genetic algorithm 

(GA)[21], differential evolution algorithm (DE)[22]. 

Table 3 illustrates the results of the comparison. Results in 

the table were calculated based on results from 5 runs of 

each algorithm. According to the comparison in Table 3, 

the smallest 𝑀_𝐼𝑁 value for each character was found by 

𝐵𝑖𝑛𝐴𝑂 . In this way, BinAO ranked first among the 

algorithms and proved its success. 
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Table 2.  The "MACRO" message cryptanalysis's results 

  Run_1 Run_2 Run_3 Run_4 Run_5   

Character  IN IN IN IN IN M_IN M_time 

M 

𝐁𝒊𝒏𝑨𝑶𝑻𝟏 2 30 9 31 9 15,2 0,0176 

𝐁𝒊𝒏𝑨𝑶𝑻𝟐 7 2 199 5 12 45 0,0783 

𝐁𝒊𝒏𝑨𝑶𝑻𝟑 13 37 50 2 2 20,8 0,0222 

𝐁𝒊𝒏𝑨𝑶𝑻𝟒 4 23 10 19 1 11,4 0,0190 

A 

𝐁𝒊𝒏𝑨𝑶𝑻𝟏 6 5 1 3 2 3,4 0,0054 

𝐁𝒊𝒏𝑨𝑶𝑻𝟐 4 2 3 6 3 3,6 0,0091 

𝐁𝒊𝒏𝑨𝑶𝑻𝟑 1 11 2 1 1 3,2 0,0090 

𝐁𝒊𝒏𝑨𝑶𝑻𝟒 1 3 1 3 1 1,8 0,0055 

C 

𝐁𝒊𝒏𝑨𝑶𝑻𝟏 21 1 31 1 1 11 0,0098 

𝐁𝒊𝒏𝑨𝑶𝑻𝟐 1 3 1 6 4 3 0,0079 

𝐁𝒊𝒏𝑨𝑶𝑻𝟑 4 3 3 2 2 2,8 0,0078 

𝐁𝒊𝒏𝑨𝑶𝑻𝟒 3 7 2 2 2 3,2 0,0088 

R 

𝐁𝒊𝒏𝑨𝑶𝑻𝟏 2 2 18 1 7 6 0,0239 

𝐁𝒊𝒏𝑨𝑶𝑻𝟐 2 41 1 1 48 18,6 0,0259 

𝐁𝒊𝒏𝑨𝑶𝑻𝟑 2 1 1 1 7 2,4 0,0053 

𝐁𝒊𝒏𝑨𝑶𝑻𝟒 3 4 1 9 3 4 0,0089 

O 

𝐁𝒊𝒏𝑨𝑶𝑻𝟏 1 10 4 12 2 5,8 0,0103 

𝐁𝒊𝒏𝑨𝑶𝑻𝟐 35 1 3 1 34 14,8 0,0186 

𝐁𝒊𝒏𝑨𝑶𝑻𝟑 1 15 3 10 25 10,8 0,0151 

𝐁𝒊𝒏𝑨𝑶𝑻𝟒 11 1 1 3 4 4 0,0051 

Table 3. Comparative results of algorithms in the literature for "MACRO"  message cryptanalysis 

 Algorithms 

Characters BinAO MWOA FA GA DE 

 M_IN M_IN M_IN M_IN M_IN 

M 11,4 16 15 258,4 31,4 

A 1,8 5,8 12 220 29,2 

C 3,2 11,4 12,4 260,8 21,6 

R 4 5,6 8,6 192,2 28,2 

O 4 7,8 5,2 100,6 11,2 

Total 24,4 46,6 53,2 1032 121,6 

Rank 1 2 3 5 4 

5. Discussion 

In this study, the proposed BinAO algorithm was tested 

in the Merkle-Hellman encryption system with four 

different Taper transfer functions, and the results were 

evaluated in detail. Experiments on both "CAT" and 

"MACRO" messages showed that the B𝑖𝑛𝐴𝑂𝑇4  version 

was the most successful, with the lowest mean iteration 

count and mean time. In comparison with the widely used 

MWOA, FA, GA, and DE algorithms in the literature, 

BinAO ranked first with lower iteration values across all 

characters. These results demonstrate the proposed 

approach's high solution capability and processing 

efficiency in cryptanalysis problems. 

Furthermore, significant differences were observed 

between the Taper functions. In particular, B𝑖𝑛𝐴𝑂𝑇4 

produced more stable and faster solutions compared to 

versions like B𝑖𝑛𝐴𝑂𝑇1 , which produced more unstable 

results. This demonstrates that the structure of the transfer 

function directly affects success in discrete solution space 

problems. The results support BinAO as a powerful and 

competitive method in terms of both temporal efficiency 

and accurate character resolution. 

6. Conclusion 

Aquila Optimizer is an effective algorithm proposed for 

continuous optimization problems. In this study, this 

algorithm, which operates in binary solution spaces, was 

adapted with four different Taper-shaped transfer 
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functions and tested on the decryption problem of the 

Merkle-Hellman Knapsack Cryptosystems. In 

experiments conducted on "CAT" and "MACRO" 

messages, the mean number of iterations required to reach 

the correct ASCII value of each character and the mean 

running time were evaluated as key performance metrics. 

The results, in particular, showed that the BinAO_T4 

configuration reached the target solution in fewer 

iterations and a shorter time compared to other variants. 

This demonstrates the critical role of transfer functions in 

algorithm performance, both in guiding and accelerating 

the search process. Furthermore, the proposed method was 

found to achieve similar or better performance with lower 

computational cost compared to other heuristic algorithms 

commonly used in the literature. These results demonstrate 

that the method can achieve successful and reliable 

performance in both academic research and real-world 

applications.  

In the future, the proposed algorithm is planned to be 

applied to various binary decision problems such as feature 

selection and facility location. Additionally, studies will be 

conducted on the automatic optimization and adaptability 

of transfer function parameters. Because the parameters 

are kept constant in this study, the effects of different 

parameter settings on algorithm performance need to be 

investigated in detail. Furthermore, since only a limited 

number of transfer functions were tested, the aim is to 

compare the algorithm with different binarization 

techniques. 
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