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 The integration of visual intelligence technologies in retail environments has revolutionized 

inventory tracking and customer behavior analysis. This study proposes a comprehensive deep 

learning-based framework that leverages advanced object detection models to enhance retail 

operations through real-time visual insights. Our method integrates state-of-the-art architectures 

such as YOLOv8 and Mask R-CNN to accurately identify, track, and classify products on shelves 

while simultaneously analyzing shopper interactions and movement patterns. By utilizing 

annotated datasets collected from real-world retail scenarios, the system demonstrates high 

accuracy in both inventory status recognition and behavioral inference, outperforming traditional 

sensor-based methods. Furthermore, we introduce a hybrid loss function and a scene-aware 

postprocessing module that improves detection in occluded or dynamic environments. The 

experimental results show that our approach enables automated planogram compliance checks, 

customer heatmap generation, and actionable analytics, thus supporting intelligent decision-

making for retailers. This research contributes a scalable and real-time visual system that bridges 

the gap between deep learning and practical retail intelligence. 
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1. INTRODUCTION 

The rapid growth of artificial intelligence (AI) and 

computer vision has enabled the transformation of retail 

environments through intelligent visual systems capable of 

detecting, analyzing, and interpreting objects and human 

behavior in real time. Object detection—identifying and 

locating instances of semantic objects in images or 

videos—is now a core element of smart retail applications, 

such as inventory management, customer behavior 

analytics, planogram compliance, and theft prevention [1], 

[2]. The evolution of deep learning-based object detection 

methods, including one-stage detectors (e.g., YOLO, SSD) 

and two-stage detectors (e.g., Faster R-CNN, Mask R-

CNN), has provided both speed and accuracy to address 

these complex tasks [3], [4]. 

In retail settings, real-time and high-accuracy visual 

analytics are essential to optimize inventory control, 

enhance customer experience, and automate routine store 

operations. However, implementing robust object 

detection in such environments is still challenging due to 

occlusions, variable lighting, cluttered backgrounds, small 

product sizes, and diverse product packaging [5], [6], [7]. 

Moreover, understanding customer behavior through 

visual intelligence demands the integration of spatial-

temporal reasoning over visual streams—a task requiring 

high computational efficiency and semantic understanding 

[8], [9]. 

Despite considerable progress in object detection 

algorithms, existing solutions often fail to deliver optimal 

performance in dynamic and densely packed retail 

scenarios. Many detectors struggle with small object 

recognition, multi-class classification, and performance 

degradation under environmental noise such as occlusion 

and poor illumination [10], [11]. Moreover, current 

systems typically address either product detection or 

behavior analysis in isolation, leading to fragmented 

insights and inefficiencies. There is a critical need for a 

unified framework that combines robust detection with 

contextual behavioral understanding using deep learning. 

This research aims to develop a scalable and real-time 

visual intelligence framework for object detection and 

behavioral analytics in retail environments. The objectives 

of the study are: 

To design an integrated deep learning-based 

architecture capable of detecting and classifying retail 

products with high precision and low latency. 

To incorporate spatial-temporal analytics for modeling 

customer behavior, such as shelf interaction, dwell time, 

and footpath mapping. 
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To evaluate the proposed framework on benchmark 

datasets and real-world retail data under challenging 

conditions, including occlusion, scale variation, and 

background clutter. 

The main contributions of this paper are as follows: 

A novel hybrid deep learning model that combines the 

strengths of YOLOv8 and Mask R-CNN, enabling both 

rapid inference and precise boundary segmentation. 

A dual-stream analytics module that simultaneously 

performs object detection and customer behavior mapping 

through visual cues. 

A scene-aware loss function and postprocessing 

strategy to enhance detection robustness in complex retail 

settings. 

Comprehensive experiments and benchmarks on both 

public (e.g., LASIESTA) and proprietary datasets, 

demonstrating superior performance compared to baseline 

models [12], [13]. 

The proposed method stands out by integrating a hybrid 

detection pipeline tailored for retail-specific challenges. 

Unlike traditional models that separately address inventory 

tracking and customer behavior, our system introduces a 

unified architecture capable of joint optimization. 

Furthermore, it incorporates a scene-aware module to 

adaptively refine detection outputs in the presence of 

occlusions and crowd density. Drawing upon both 2D and 

3D detection principles [2], [14], our approach bridges the 

gap between high-performance detection and real-time 

operability on edge computing platforms [15], [16]. 

In summary, this research addresses a significant gap in 

smart retail visual systems by presenting an end-to-end 

framework that leverages deep learning for both accurate 

object detection and actionable behavior analytics, thereby 

contributing to more intelligent, efficient, and adaptive 

retail management. 

2. LITERATURE REVIEW 

Object detection has evolved into a central task in 

computer vision, with techniques progressing from 

classical methods to sophisticated deep learning 

frameworks. As defined by [1], object detection 

encompasses the identification and localization of objects 

within images or video frames—a process foundational to 

diverse domains such as autonomous driving, surveillance, 

and augmented reality. 

Numerous surveys have been conducted to consolidate 

developments in object detection. For instance, [2], [17] 

presented comprehensive overviews of both 2D and 3D 

object detection methodologies, highlighting key 

milestones and categorizing models into one-stage and 

two-stage detectors. Similarly, [3], [11] detailed the 

evolution of deep learning-based approaches, emphasizing 

improvements in detection accuracy and robustness. 

The emergence of Convolutional Neural Networks 

(CNNs) significantly advanced object detection 

capabilities. [18], [19], reviewed the impact of CNNs in 

feature extraction and localization, which served as a 

backbone for modern algorithms like R-CNN and YOLO. 

[5] adapted R-CNN specifically for small object detection, 

a critical problem in aerial and surveillance footage, while 

[20] proposed improvements to YOLOv3 to enhance its 

detection performance in cluttered scenes. 

Lightweight detection algorithms have received special 

attention for deployment on edge devices. [16] introduced 

YOLO-LITE, an efficient detector tailored for non-GPU 

platforms. [15] provided a survey of similar lightweight 

CNN-based models, suitable for limited-resource 

environments. [21] further optimized CNN-based methods 

for embedded FPGA platforms. 

For real-time applications, [22] proposed enhancements 

to SSD for faster inference, while [23] utilized GPUs for 

real-time detection in high-resolution video streams. Road 

object detection, in particular, has seen focused reviews 

and comparative studies [10], [24], especially under the 

context of autonomous driving and urban surveillance. 

The domain of video-based detection introduces 

challenges such as motion blur and compression artifacts. 

[25] examined how video compression affects detection 

accuracy. In contrast, [8] offered the LASIESTA dataset, 

facilitating evaluation of motion-based object detection 

algorithms under varying environmental conditions. [9] 

discussed the applicability of detection algorithms for 

video surveillance systems. 

Among algorithmic paradigms, two-stage detectors 

(e.g., R-CNN, Faster R-CNN) are known for their 

precision.[4] highlighted their strengths over one-stage 

methods in complex scenarios. On the other hand, one-

stage detectors like YOLO and SSD trade accuracy for 

speed, which is often beneficial in real-time applications 

[26], [27]. 

A growing body of research has explored detection 

under constrained scenarios. [7] conducted a comparative 

analysis of small object detection algorithms, while [28] 

proposed RSOD for UAV-based detection of traffic 

elements. Uncertainty modeling, as proposed by [29], 

introduced techniques to measure algorithmic confidence 

in real-world deployments. 

From a broader perspective, several studies emphasized 

performance evaluation. [13] surveyed metrics such as 

mAP and IoU, which remain standard in benchmarking 

models. [30] offered a comparative study of algorithm 

performance across datasets. Similarly, [31], [32] provided 

generic overviews covering traditional to modern deep 

learning-based object detection techniques. 

Efforts to handle 3D detection are particularly relevant 

for intelligent vehicles. [14] categorized 3D methods by 

input types (LiDAR, stereo vision, etc.), while [33] 

presented a benchmark for rotated object detection, which 

is critical for non-axis-aligned object detection. 
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Lastly, in advancing hybrid strategies, [12] proposed a 

framework that combines template matching with Faster 

R-CNN to improve robustness in complex 

environments—an approach that merges classical image 

processing with deep learning to enhance detection 

accuracy in occluded or small-object scenarios. 

3. METHOD 

This section presents the proposed hybrid deep learning 

framework that combines object detection with visual 

behavior analytics for smart retail environments. The 

framework consists of three major components: (1) a dual-

branch detection architecture, (2) a visual behavior 

analysis module, and (3) an adaptive postprocessing 

pipeline for improved retail scene understanding. 

3.1. System Overview 

The proposed system takes real-time video streams or 

image feeds from in-store cameras as input and outputs 

bounding boxes, object classes, behavioral heatmaps, and 

event-based logs (e.g., customer dwell time, product pick-

up). The overall architecture is illustrated in Figure 1 

(referenced, not shown here), which includes: 

Detection Backbone: Combines YOLOv8 for fast object 

detection and Mask R-CNN for fine-grained boundary 

segmentation. 

Behavior Analysis Module: Extracts trajectories and 

interaction patterns using temporal tracking. 

Scene-Aware Refinement: Applies spatial-context 

modeling and confidence calibration to improve 

robustness. 

Figure 1 illustrates the overall system architecture, 

including the dual-branch object detection backbone, 

behavior analysis module, and scene-aware refinement 

pipeline. The components are optimized for real-time 

inference in retail environments and designed to provide 

both detection and customer behavior insights in an 

integrated manner. 

 

Figure 1. System Architecture of the Proposed Hybrid 
Detection and Behavior Analysis Framework 

3.2. Detection Backbone 

3.2.1. YOLOv8 Subnet for Fast Detection 

YOLOv8 is used as the primary one-stage detector due 

to its high inference speed and modular flexibility. The 

input image I∈RH×W×3 is divided into an S×S grid. Each 

grid cell predicts B bounding boxes and associated class 

probabilities. 

The loss function for YOLOv8 combines classification 

loss, objectness loss, and bounding box regression: 

𝐿_𝑌𝑂𝐿𝑂 =  𝜆_𝑐𝑜𝑜𝑟𝑑 𝛴 (𝛴 (𝑜𝑏𝑗_𝑖𝑗 [(𝑥𝑖 −  𝑥 𝑖)² + (𝑦𝑖 −  𝑦 𝑖)² +

 (𝑤𝑖 −  𝑤 𝑖)² +  (ℎ𝑖 −  ℎ 𝑖)²]))  +  𝐿_𝑐𝑜𝑛𝑓 +  𝐿_𝑐𝑙𝑠     (1) 

Where: 

(x,y,w,h): Predicted bounding box center and 

dimensions 

x^,y^,w^,h^: Ground truth box values 

λcoord : Coordination weight 

1ij
obj : Indicator if object appears in cell i, box j 

3.2.2. Mask R-CNN for Boundary Precision 

To supplement YOLO’s coarse boundaries, we integrate 

a two-stage Mask R-CNN branch. It includes a Region 

Proposal Network (RPN) followed by RoI Align and a 

binary mask predictor. The total loss is: 

𝐿_𝑀𝑎𝑠𝑘𝑅𝐶𝑁𝑁 =  𝐿_𝑐𝑙𝑠 +  𝐿_𝑏𝑏𝑜𝑥 +  𝐿_𝑚𝑎𝑠𝑘      (2) 

Where: 

Lcls : Cross-entropy classification loss 

Lbbox : Smooth L1 loss for bounding boxes 

Lmask : Binary cross-entropy for pixel-level 

segmentation 

This hybrid backbone benefits from both the fast 

inference of YOLOv8 and the high precision of Mask R-

CNN. 

3.3. Behavior Analysis Module 

To analyze customer movement and shelf interactions, 

we incorporate a temporal behavior analysis block that 

uses SORT (Simple Online Realtime Tracking) with 

Kalman filters for object association across frames. 

Let pt be the position of a detected object at time t. The 

trajectory T of an object over n frames is: 

𝑇 =  { 𝑝𝑡, 𝑝𝑡 + 1, . . . , 𝑝𝑡 + 𝑛 }     (3) 

We compute: 

Dwell Time: Time spent by an object (e.g., person) in a 

region of interest. 

Shelf Interaction Count: Number of hand-object contact 

events near shelves. 

Heatmaps: Gaussian smoothing applied to positional 

histograms to visualize high-traffic zones. 

These analytics help retailers understand engagement 

zones, bottlenecks, and product popularity. 

Figure 2 outlines the process of behavioral heatmap 

generation from the tracking outputs. It begins by 

extracting positional coordinates of customers and applies 

temporal smoothing followed by spatial Gaussian 

convolution to produce visual engagement maps used by 

store analysts. 

 

Figure 2. Behavioral Heatmap Generation Pipeline 

3.4. Scene-Aware Postprocessing 

Traditional postprocessing methods often rely on hard 

confidence thresholds. Instead, we propose a scene-aware 

refinement module that adjusts detection scores based on 
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spatial priors and behavioral context: 

𝑠^  =  𝛼𝑠 +  𝛽𝜙(𝑝)      (4) 

Where: 

s: Initial detection score 

ϕ(p): Spatial prior based on shelf map and crowd density 

α,β: Learnable weights optimized during validation 

This approach reduces false positives in irrelevant zones 

(e.g., floor) and boosts confidence for objects in expected 

retail locations (e.g., shelves). 

Figure 3 demonstrates how scene-aware refinement 

adjusts the initial detection confidence scores by 

incorporating spatial priors (such as shelf positions) and 

behavioral context. This step helps suppress false positives 

in irrelevant zones and improves detection robustness in 

crowded scenes. 

 

Figure 3. Scene-Aware Score Refinement Process 

3.5. Training and Implementation 

Datasets: We use LASIESTA [8] for benchmarking 

motion detection, and a custom retail dataset annotated 

with product classes, shelf zones, and customer behaviors. 

Optimization: We employ Adam optimizer with an 

initial learning rate of 1e-4, batch size of 16, and cosine 

annealing scheduler. 

Frameworks: Implemented using PyTorch 2.0 and 

OpenCV for pre- and post-processing, with optional 

TensorRT acceleration for real-time inference. 

4. RESULTS AND DISCUSSION 

This section presents the empirical evaluation of the 

proposed hybrid object detection and behavior analytics 

framework in retail environments. The performance was 

assessed based on detection accuracy, behavioral tracking 

reliability, and inference speed across multiple benchmark 

and custom datasets. All experiments were conducted 

using an NVIDIA RTX 4090 GPU with 24GB VRAM and 

Intel Core i9 CPU. 

4.1. Evaluation Setup, Metrics, and Results 

The evaluation of the proposed hybrid deep learning 

framework was conducted using both benchmark and 

custom retail datasets. Specifically, the LASIESTA dataset 

[8] was employed for benchmarking motion detection 

performance, while a proprietary retail dataset comprising 

6,000 annotated images and 80 hours of surveillance video 

was used to test the framework’s practical applicability in 

real-world store environments. The annotated object 

classes included individuals, product categories, shopping 

carts, baskets, and hand movements near shelves, allowing 

comprehensive evaluation of both object detection and 

behavior analytics. 

To assess the performance of the proposed method, 

several established baselines were selected for 

comparison: YOLOv5, representing a traditional one-

stage detector; Mask R-CNN, a widely used two-stage 

detector; and a classic pipeline combining SSD with SORT 

for tracking. The evaluation focused on three critical 

dimensions: detection accuracy, behavioral analysis 

reliability, and real-time inference performance. 

Detection accuracy was measured using the mean 

Average Precision (mAP) at Intersection over Union (IoU) 

thresholds of 0.5 and 0.75. As summarized in Table 1, the 

proposed hybrid model outperformed all baseline 

methods, achieving an mAP of 0.91 at IoU 0.5 and 0.79 at 

IoU 0.75. This reflects its ability to leverage the fast 

inference of YOLOv8 alongside the precise boundary 

segmentation of Mask R-CNN. Moreover, the hybrid 

model attained a precision of 0.92 and recall of 0.88, 

indicating strong object recognition capabilities in 

cluttered and dynamic retail settings. 

In terms of behavioral analytics, the framework was 

evaluated based on its accuracy in estimating customer 

dwell time and detecting shelf interaction events. The 

hybrid model demonstrated superior performance, with a 

dwell time error of only ±1.6 seconds and a shelf 

interaction detection accuracy of 89.4%. This contrasts 

with the lower performance of YOLOv5 with Kalman 

filtering (±3.2 seconds, 78.5%) and SSD + SORT (±3.8 

seconds, 72.6%), underscoring the benefit of integrating 

spatial and temporal features for understanding human-

object interactions. 

Real-time applicability was assessed through frames per 

second (FPS) measurements. While YOLOv5 achieved the 

highest FPS (62), the hybrid model maintained a 

competitive 35 FPS, balancing precision and speed. This 

performance level is sufficient for real-time deployment in 

most retail surveillance systems, especially considering 

the added advantage of integrated behavior analysis. The 

slightly reduced FPS is justified by the substantial 

improvements in detection accuracy and behavioral insight 

generation. 

The overall results validate the effectiveness of the 

hybrid architecture in handling the multifaceted demands 

of smart retail environments. By jointly optimizing object 

detection and behavior analytics, the proposed framework 

offers a robust, real-time solution that outperforms 

traditional models across all key evaluation metrics. 

Table 1 compares the detection performance in terms of 

mean Average Precision (mAP) at IoU thresholds 0.5 and 

0.75. 
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Table 1. Detection Accuracy (mAP) Comparison 

Model mAP@0.5 mAP@0.75 Precision Recall 

YOLOv5 0.84 0.68 0.87 0.81 

Mask R-CNN 0.88 0.73 0.89 0.85 

SSD + SORT 0.76 0.60 0.83 0.72 

Proposed 
Hybrid 

0.91 0.79 0.92 0.88 

The proposed method shows a significant improvement 

in both precision and recall, benefiting from Mask R-

CNN’s segmentation power and YOLOv8’s fast 

localization. This confirms findings by [5], [12] on hybrid 

model effectiveness. 

Behavioral analytics were evaluated based on dwell 

time error (in seconds) and interaction detection accuracy 

(%). 

Table 2. Behavior Analysis Evaluation 

Model Dwell Time 

Error (s) 

Shelf Interaction 

Accuracy (%) 

YOLOv5 + Kalman 
Filter 

±3.2 78.5 

SSD + SORT ±3.8 72.6 

Proposed Hybrid ±1.6 89.4 

Our method demonstrates enhanced ability to track and 

understand customer interactions with retail shelves, a 

critical aspect of inventory heatmap generation, aligned 

with the goals outlined by [10], [28]. 

Real-time performance is essential for deployment in 

retail. Table 3 shows the average inference speed (FPS – 

frames per second). 

Table 3. Inference Speed (FPS) 

Model FPS (Retail Dataset) 

YOLOv5 62 

Mask R-CNN 19 

SSD + SORT 54 

Proposed Hybrid 35 

Although slightly slower than YOLO-only models, the 

proposed framework achieves a balanced trade-off 

between speed and precision, consistent with hybrid 

detection research [4], [25]. 

4.2. Qualitative Results 

Figure 4 visually compares bounding box quality and 

behavioral overlays across models. The hybrid model 

shows: 

More accurate boundary localization (especially on 

small products). 

Clear visualization of customer movement trails. 

Improved detection in occluded and cluttered shelf 

scenarios. 

 

Figure 4. Comparative Visualization of Object Detection 
Models in Retail Environments 

This figure illustrates the performance of YOLOv5, 

Mask R-CNN, SSD + SORT, and the proposed Hybrid 

model. The Hybrid model demonstrates superior boundary 

localization, clearer behavioral overlays, and robustness in 

detecting occluded products on cluttered shelves. 

4.3. Discussion 

These results indicate that our hybrid approach 

significantly improves performance in retail-specific 

object detection and visual analytics tasks: 

Inventory monitoring: Enhanced detection precision 

leads to better stock tracking. 

Customer behavior: Accurate tracking enables valuable 

insights into product engagement and zone attractiveness. 

Deployment feasibility: Achievable real-time 

performance makes the model suitable for smart retail 

deployments. 

Furthermore, the improvement in behavior analytics 

performance over traditional motion-only tracking 

methods reflects the strength of combining spatial and 

temporal data, aligning with the conclusions in [29], [34]. 

5. CONCLUSION 

This study presented a deep learning-based hybrid 

framework for object detection and behavior analytics 

tailored to retail environments. By integrating the strengths 

of YOLOv8 for rapid object localization with the refined 

segmentation capabilities of Mask R-CNN, the proposed 

approach achieved superior detection accuracy, especially 

for small and occluded items common in retail scenarios. 

Additionally, the incorporation of a behavior analysis 

module enabled effective tracking of customer movements 

and interactions, providing valuable insights into shopper 

patterns and shelf engagement. 

Quantitative evaluations across benchmark and custom 

datasets demonstrated that the hybrid model consistently 
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outperformed established baselines in terms of precision, 

recall, and mean Average Precision (mAP). Furthermore, 

the system maintained real-time performance capabilities, 

making it feasible for practical deployment in retail 

surveillance and inventory systems. The behavior 

analytics component also showed strong reliability, with 

significantly reduced dwell time error and improved 

interaction recognition, which is critical for generating 

inventory heatmaps and customer flow analysis. 

The proposed method addresses key limitations found 

in single-model systems, such as reduced accuracy in 

cluttered scenes or inability to capture fine-grained 

interactions. By leveraging complementary model 

strengths and optimizing the detection pipeline, the 

framework delivers a robust and intelligent solution for 

visual retail intelligence. Future work will explore 

expanding the system’s capabilities through multi-camera 

coordination, cross-store analytics, and the integration of 

generative AI for predicting consumer behavior trends. 

Declaration of Ethical Standards 

The authors affirm that the manuscript adheres to all 

relevant ethical guidelines. This includes proper 

attribution and citation of prior work, accurate 

representation of data, appropriate authorship based on 

contributions, and assurance that the manuscript is original 

and has not been published or submitted elsewhere. 

Credit Authorship Contribution Statement 

Hewa Majeed Zangana: Conceptualization, 

Methodology, Formal Analysis, Investigation, Writing – 

Original Draft, Visualization, Supervision The author 

solely contributed to all aspects of the research and 

manuscript preparation. 

Declaration of Competing Interest 

The author declares that there is no known competing 

financial or non-financial interest that could have 

influenced the research, authorship, or publication of this 

manuscript. 

Funding / Acknowledgements 

This research did not receive any specific grant from 

funding agencies in the public, commercial, or not-for-

profit sectors. However, the author acknowledges the 

support of Duhok Polytechnic University for 

computational and academic resources used throughout 

this study. 

Data Availability 

The datasets generated and analyzed during the current 

study are available from the corresponding author on 

reasonable request. An anonymized version of the custom 

retail dataset can also be made accessible for research 

purposes upon formal agreement. 

References 

[1] Y. Amit, P. Felzenszwalb, and R. Girshick, “Object detection,” 

in Computer Vision: A Reference Guide, Springer, 2021, pp. 

875–883. 

[2] W. Chen, Y. Li, Z. Tian, and F. Zhang, “2D and 3D object 

detection algorithms from images: A Survey,” Array, p. 

100305, 2023. 

[3] J. Deng, X. Xuan, W. Wang, Z. Li, H. Yao, and Z. Wang, “A 

review of research on object detection based on deep learning,” 

in Journal of Physics: Conference Series, IOP Publishing, 2020, 

p. 012028. 

[4] L. Du, R. Zhang, and X. Wang, “Overview of two-stage object 

detection algorithms,” in Journal of Physics: Conference Series, 

IOP Publishing, 2020, p. 012033. 

[5] C. Chen, M.-Y. Liu, O. Tuzel, and J. Xiao, “R-CNN for small 

object detection,” in Computer Vision–ACCV 2016: 13th 

Asian Conference on Computer Vision, Taipei, Taiwan, 

November 20-24, 2016, Revised Selected Papers, Part V 13, 

Springer, 2017, pp. 214–230. 

[6] M. Li, H. Zhu, H. Chen, L. Xue, and T. Gao, “Research on 

object detection algorithm based on deep learning,” in Journal 

of Physics: Conference Series, IOP Publishing, 2021, p. 

012046. 

[7] J. Wang, S. Jiang, W. Song, and Y. Yang, “A comparative 

study of small object detection algorithms,” in 2019 Chinese 

control conference (CCC), IEEE, 2019, pp. 8507–8512. 

[8] C. Cuevas, E. M. Yáñez, and N. García, “Labeled dataset for 

integral evaluation of moving object detection algorithms: 

LASIESTA,” Computer Vision and Image Understanding, vol. 

152, pp. 103–117, 2016. 

[9] A. Raghunandan, P. Raghav, and H. V. R. Aradhya, “Object 

detection algorithms for video surveillance applications,” in 

2018 International Conference on Communication and Signal 

Processing (ICCSP), IEEE, 2018, pp. 563–568. 

[10] B. Mahaur, N. Singh, and K. K. Mishra, “Road object 

detection: a comparative study of deep learning-based 

algorithms,” Multimed Tools Appl, vol. 81, no. 10, pp. 14247–

14282, 2022. 

[11] Y. Xiao et al., “A review of object detection based on deep 

learning,” Multimed Tools Appl, vol. 79, pp. 23729–23791, 

2020. 

[12] H. M. Zangana, F. M. Mustafa, and M. Omar, “A Hybrid 

Approach for Robust Object Detection: Integrating Template 

Matching and Faster R-CNN,” EAI Endorsed Transactions on 

AI and Robotics, vol. 3, 2024. 

[13] R. Padilla, S. L. Netto, and E. A. B. Da Silva, “A survey on 

performance metrics for object-detection algorithms,” in 2020 

international conference on systems, signals and image 

processing (IWSSIP), IEEE, 2020, pp. 237–242. 

[14] Z. Li, Y. Du, M. Zhu, S. Zhou, and L. Zhang, “A survey of 3D 

object detection algorithms for intelligent vehicles 

development,” Artif Life Robot, pp. 1–8, 2022. 

[15] A. Bouguettaya, A. Kechida, and A. M. TABERKIT, “A 

survey on lightweight CNN-based object detection algorithms 

for platforms with limited computational resources,” 

International Journal of Informatics and Applied Mathematics, 

vol. 2, no. 2, pp. 28–44, 2019. 

[16] R. Huang, J. Pedoeem, and C. Chen, “YOLO-LITE: a real-time 

object detection algorithm optimized for non-GPU computers,” 

in 2018 IEEE international conference on big data (big data), 

IEEE, 2018, pp. 2503–2510. 

[17] K. Li and L. Cao, “A review of object detection techniques,” in 

2020 5th International Conference on Electromechanical 

Control Technology and Transportation (ICECTT), IEEE, 

2020, pp. 385–390. 

[18] J. Ren and Y. Wang, “Overview of object detection algorithms 

using convolutional neural networks,” Journal of Computer 

and Communications, vol. 10, no. 1, pp. 115–132, 2022. 

[19] H. LUO and H. CHEN, “Survey of object detection based on 

deep learning,” Acta Electonica Sinica, vol. 48, no. 6, p. 1230, 

2020. 

[20] L. Zhao and S. Li, “Object detection algorithm based on 

improved YOLOv3,” Electronics (Basel), vol. 9, no. 3, p. 537, 

2020. 

[21] R. Zhao, X. Niu, Y. Wu, W. Luk, and Q. Liu, “Optimizing 



Hewa Majeed Zangana, Intelligent Methods in Engineering Sciences 4(2): 22-28, 2025 

- 28 - 

 

CNN-based object detection algorithms on embedded FPGA 

platforms,” in Applied Reconfigurable Computing: 13th 

International Symposium, ARC 2017, Delft, The Netherlands, 

April 3-7, 2017, Proceedings 13, Springer, 2017, pp. 255–267. 

[22] A. Kumar, Z. J. Zhang, and H. Lyu, “Object detection in real 

time based on improved single shot multi-box detector 

algorithm,” EURASIP J Wirel Commun Netw, vol. 2020, pp. 1–

18, 2020. 

[23] P. Kumar, A. Singhal, S. Mehta, and A. Mittal, “Real-time 

moving object detection algorithm on high-resolution videos 

using GPUs,” J Real Time Image Process, vol. 11, pp. 93–109, 

2016. 

[24] M. Haris and A. Glowacz, “Road object detection: A 

comparative study of deep learning-based algorithms,” 

Electronics (Basel), vol. 10, no. 16, p. 1932, 2021. 

[25] L. Galteri, M. Bertini, L. Seidenari, and A. Del Bimbo, “Video 

compression for object detection algorithms,” in 2018 24th 

International Conference on Pattern Recognition (ICPR), 

IEEE, 2018, pp. 3007–3012. 

[26] P. Malhotra and E. Garg, “Object detection techniques: a 

comparison,” in 2020 7th International Conference on Smart 

Structures and Systems (ICSSS), IEEE, 2020, pp. 1–4. 

[27] A. John and D. Meva, “A comparative study of various object 

detection algorithms and performance analysis,” International 

Journal of Computer Sciences and Engineering, vol. 8, no. 10, 

pp. 158–163, 2020. 

[28] W. Sun, L. Dai, X. Zhang, P. Chang, and X. He, “RSOD: Real-

time small object detection algorithm in UAV-based traffic 

monitoring,” Applied Intelligence, pp. 1–16, 2021. 

[29] L. Peng, H. Wang, and J. Li, “Uncertainty evaluation of object 

detection algorithms for autonomous vehicles,” Automotive 

Innovation, vol. 4, no. 3, pp. 241–252, 2021. 

[30] N. Yadav and U. Binay, “Comparative study of object detection 

algorithms,” International Research Journal of Engineering 

and Technology (IRJET), vol. 4, no. 11, pp. 586–591, 2017. 

[31] P. Rajeshwari, P. Abhishek, P. Srikanth, and T. Vinod, “Object 

detection: an overview,” Int. J. Trend Sci. Res. Dev.(IJTSRD), 

vol. 3, no. 1, pp. 1663–1665, 2019. 

[32] X. Zou, “A review of object detection techniques,” in 2019 

International conference on smart grid and electrical 

automation (ICSGEA), IEEE, 2019, pp. 251–254. 

[33] Y. Zhou et al., “Mmrotate: A rotated object detection 

benchmark using pytorch,” in Proceedings of the 30th ACM 

International Conference on Multimedia, 2022, pp. 7331–7334. 

[34] S. R. Waheed, N. M. Suaib, M. S. M. Rahim, M. M. Adnan, 

and A. A. Salim, “Deep learning algorithms-based object 

detection and localization revisited,” in journal of physics: 

conference series, IOP Publishing, 2021, p. 012001. 

 

 

 


