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 The rose plant holds significant economic and cultural value, not only as an ornamental species 
but also due to its widespread use across various industrial domains such as cosmetics, medicine, 

and perfumery. In this context, the early and accurate detection of leaf diseases is crucial for 

ensuring the healthy cultivation of rose plants. This study presents a novel approach that integrates 
image processing and deep learning techniques for the detection of common leaf diseases in rose 

plants. The proposed method utilizes the RoseNet dataset, which consists of three classes: Black 

Spot, Downy Mildew, and Fresh Leaf. Input images were converted into RGB, HSV, and YCrCb 

color spaces and then fused at the channel level to enhance spectral diversity and improve the 
model's learning capacity. The developed convolutional neural network (CNN) architecture was 

enriched with channel attention mechanisms, namely Squeeze-and-Excitation (SE) and Efficient 

Channel Attention (ECA) blocks. Class imbalance issues were addressed through class weighting 

and label smoothing strategies. The model's performance was evaluated using multiple metrics 
such as accuracy, precision, recall, and F1-score. Achieving an accuracy of 95.65%, the proposed 

model outperformed widely used CNN architectures in the literature. Furthermore, with a low 

parameter count (1.03M) and a fast test time (376 ms), the model is well-suited for deployment on 

embedded systems. The findings demonstrate that attention mechanisms are effective in enhancing 
class discrimination, particularly in low-sample-size datasets. Thus, the proposed model offers a 

reliable, cost-effective, and AI-based solution for the diagnosis of plant leaf diseases. 

 

 
This is an open access article under the CC BY-SA 4.0 license. 

(https://creativecommons.org/licenses/by-sa/4.0/) 
 

Keywords: 

CNN,  

SE-ECA Bloks 

 

 

1. Introduction 

Early diagnosis and accurate identification of plant 

diseases are of paramount importance in enhancing 

agricultural product quality and minimizing yield losses. 

The agricultural sector is under increasing pressure to 

ensure food security, driven by factors such as the growing 

global population and climate change. Timely detection of 

diseases that threaten plant health has become an 

indispensable component of sustainable agricultural 

practices. Traditional diagnostic methods are typically 

based on visual inspection and expert opinion, which are 

often time-consuming, costly, and subjective—thereby 

limiting their applicability in large-scale agricultural areas. 

In recent years, rapid advancements in artificial 

intelligence and image processing techniques have 

accelerated research into the automatic and reliable 

diagnosis of plant diseases. Deep learning models, in 

particular, offer high diagnostic accuracy owing to their 

capacity to extract meaningful features from complex 

image data. As a result, both time efficiency is improved 

and human error is significantly reduced. 

One of the most prominent applications of these 

technological developments is the diagnosis of diseases 

affecting the rose plant (Rosa spp.). Beyond its ornamental 

value, the rose plant has extensive applications in the 

cosmetics, perfumery, and pharmaceutical industries, 

rendering it a strategic agricultural commodity with high 

economic value. Turkey is one of the world’s leading 

producers of rose oil, with the Isparta province and its 

surrounding regions known for intensive rose cultivation. 

According to data from the Turkish Statistical Institute 

(TÜİK), over 10,000 tons of rose flowers are harvested 

annually, with a substantial portion exported. Therefore, 

ensuring the healthy development of rose plants and 

managing plant diseases effectively are of great 

importance for both economic sustainability and industrial 

product quality. 

Mohanty et al. [1] classified leaf diseases using 

convolutional neural network (CNN) models based on the 

PlantVillage dataset, which comprises a total of 54,306 

leaf images divided into 38 distinct classes. This study 

stands out as one of the pioneering works in the field, 
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highlighting the effectiveness of image-based diagnosis. 

Ferentinos [2] conducted a comparative analysis of 

different CNN architectures—namely AlexNet, 

GoogLeNet, and VGG—for the classification of various 

foliar diseases in agricultural plants. The study 

demonstrated that transfer learning methods can exhibit 

strong performance even when applied to limited datasets. 

Sankaran et al. [3] systematically evaluated sensor-based 

plant health monitoring techniques by comparing 

hyperspectral, thermal, and fluorescence imaging 

methods. Kamilaris and Prenafeta-Boldú [4] discussed the 

role of deep learning in agricultural production within a 

broad literature framework, emphasizing the importance 

of processing time and model complexity in addition to 

classification accuracy. Ali et al. [5] presented a 

comprehensive review encompassing proposed models, 

datasets, and evaluation metrics for plant disease 

detection. Similarly, Too et al. [6] investigated the 

comparative performance of various pretrained CNN 

models, including DenseNet, ResNet, and MobileNet. In a 

comparable approach, Fuentes et al. [7] employed a 

YOLO-based object detection system to identify both 

diseases and pests in tomato plants in real time. From a 

more classical perspective, Arivazhagan et al. [8] 

successfully classified banana plant diseases using feature 

extraction methods based on color and shape. These 

studies represent pre-deep-learning approaches and 

continue to serve as valuable benchmarks in the literature. 

Although studies specifically targeting rose plants 

remain limited compared to the broader plant health 

monitoring literature, research in this area has gained 

substantial momentum, particularly following the 

development of rose-specific image databases such as 

RoseNet after 2023. In a 2023 study, a CNN-based model 

developed using the RoseNet dataset successfully 

classified common rose leaf diseases, including Black 

Spot, Powdery Mildew, and Downy Mildew [9]. This 

work is notable for demonstrating the effectiveness of 

enriching image color channels and addressing class 

imbalance in improving model performance. 

Similarly, a 2024 study utilizing the RoseNet dataset 

proposed a preprocessing step incorporating color space 

transformations and spectral information integration, 

resulting in the development of a lightweight CNN model 

suitable for mobile applications [10]. Furthermore, Latifah 

et al. [11] applied hyperparameter optimization 

techniques—such as RMSprop and early stopping—on the 

Rose Leaf Disease dataset to achieve high classification 

accuracy, underscoring the model’s generalizability and 

practical viability. Mridha et al. [12] proposed a high-

performance model for leaf disease detection using a 

transfer learning approach based on the Xception 

architecture. Their dataset included rose, mango, and 

tomato leaf images, demonstrating the model’s capability 

to generalize across species. Rajbongshi et al. [13] 

employed the MobileNet architecture to develop mobile-

compatible AI solutions for classifying rose leaf diseases. 

Most recently, Hu et al. [14] enhanced the feature 

extraction capacity of deep learning models using 

Squeeze-and-Excitation (SE) blocks—channel-wise 

attention mechanisms—which significantly improved 

classification performance, especially in tasks involving 

subtle visual differences among rose leaf diseases. 

These recent studies clearly highlight the need for 

models specifically tailored to rose leaf disease 

classification and reinforce the originality of the present 

research. Addressing this gap in the literature, the current 

study aims to develop a lightweight and optimized CNN 

architecture capable of delivering high classification 

accuracy and practical applicability using a balanced and 

challenging dataset. Ultimately, this research seeks to 

contribute to the proliferation of digital diagnostic systems 

in ornamental plant agriculture. 

2. MATERIALS AND METHODS 

2.1. Dataset 

In this study, the RoseNet dataset a customized image 

dataset specifically developed for detecting common 

diseases in rose plant leave was utilized. The dataset 

comprises three classes: Black Spot, Downy Mildew, and 

Fresh Leaf. It contains a total of 917 images, with an 

imbalanced class distribution. Therefore, data 

augmentation techniques were not employed; instead, the 

class imbalance was addressed through the application of 

class weighting during model training. 

All images were resized to 256×256 pixels, and the 

dataset was divided into training and testing subsets using 

a stratified sampling strategy with an 85%–15% split, 

respectively. In this method, each class was proportionally 

sampled and distributed into the training and testing 

subsets to ensure that the class representation remained 

consistent across both partitions. Given that class 

imbalance may adversely affect model performance, 

stratified sampling was deliberately chosen to improve 

data representativeness and preserve the distributional 

integrity of each class during model evaluation. 

2.2. Preprocessing Pipeline 

Color, texture, and brightness variations observed on 

plant leaves are key indicators for disease detection. In this 

study, in order to extract more comprehensive information 

from different color components, the images were 

transformed into RGB, HSV, and YCrCb color spaces. As 

illustrated in Figure 1, a sample image from the Downy 

Mildew class is shown after preprocessing for each color 

space. These transformed images were then concatenated 

along the channel axis to form a 9-channel tensor. This 

fusion approach was observed to enhance the model's 

ability to learn diverse spectral features more effectively 

across different color dimensions. The resulting composite 
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structure can be mathematically expressed as follows: 

𝐺𝑓 = [𝐺𝑅𝐺𝐵 | 𝐺𝐻𝑆𝑉 | 𝐺𝑌𝐶𝑟𝐶𝑏] ∈  𝑅256𝑥256𝑥9   (10) 

 

Figure 1. Image After Preprocessing in Multiple Color Spaces 

Subsequently, all tensors were channel-wise normalized 

to have a mean of 0 and a standard deviation of 1. This 

preprocessing step ensured numerical stability and enabled 

faster convergence during training. Class labels were 

converted into numerical format to facilitate compatibility 

with the model input. To enhance the model's 

generalization ability and to prevent over-confident 

predictions, the label smoothing technique was applied. In 

this approach, instead of assigning a probability of 1 to the 

target class, it is slightly reduced to 1−ε (e.g., 0.9), while 

the remaining probability is distributed among the non-

target classes (e.g., 0.05 each), allowing the model to learn 

in a more flexible and robust manner. In addition, due to 

the presence of class imbalance in the dataset, a class-

weighted loss function was employed to support the 

learning of minority classes. In this strategy, the loss 

contribution of each class was weighted inversely 

proportional to the number of its instances, aiming to 

ensure fair and balanced learning across all categories. 

2.3.  Design of the Proposed Deep Learning Framework 

In this study, a custom-designed Convolutional Neural 

Network (CNN) architecture is proposed, developed from 

scratch to support color channel fusion and enhanced 

through integrated attention mechanisms. The model is 

designed to operate on 9-channel input tensors with a 

resolution of 256×256 pixels. In the initial stage of the 

architecture, two consecutive convolutional layers are 

employed for primary feature extraction. Each 

convolutional layer is followed by batch normalization and 

a Rectified Linear Unit (ReLU) activation function. At the 

end of these blocks, spatial dropout layers are incorporated 

to mitigate overfitting by randomly deactivating portions 

of the activation maps. These layers form modular 

structures in which feature extraction and attention 

mechanisms work in synergy. An overview of the 

proposed architecture is illustrated in Figure 2. 

 

Figure 2. Block Diagram 

After each convolutional block, Squeeze-and-

Excitation (SE) blocks were integrated to emphasize the 

informational contribution of each channel in the input 

tensor. Additionally, Efficient Channel Attention (ECA) 

blocks were employed to model inter-channel 

dependencies based on local neighborhood interactions. 

The SE block consists of three fundamental steps: First, a 

global average pooling (GAP) operation is applied to the 

input tensor to extract a summary vector (𝑧𝑐 ) for each 

channel. Then, this vector is passed through a series of 

fully connected layers, where it is processed using ReLU 

and sigmoid activation functions to obtain channel-wise 

attention scores (𝑠𝑐).  

In the final step, each channel (𝑋𝑐) is rescaled by its 

corresponding attention score, performing an element-

wise multiplication between the attention vector and the 

original tensor. This operation enables an adaptive feature 

recalibration, highlighting channels based on their 

information density. 

𝑧𝑐  =  
1

𝐻.𝑊
 ∑  ∑  𝑋𝑖,𝑗,𝑐

𝑊
𝐽=1

𝐻
𝑖=1        (1)  

𝑠𝑐  =  𝜎 (𝑊2 . 𝛿(𝑊1 . 𝑧𝑐))       (2) 

𝑋′𝐶 =  𝑠𝑐  . 𝑋𝑐       (3) 

ECA blocks offer a more streamlined alternative to SE 

blocks by modeling channel attention through a non-

parametric approach. This structure applies 1D 

convolution over the channel-wise summary vector to 

learn contextual relationships among channels. Due to its 

low parameter requirements, the ECA mechanism is 

particularly well-suited for use in mobile and embedded 

systems. The resulting attention coefficients are directly 

applied to the input tensor, effectively guiding the model 

to focus on the most informative channels. A visual 

representation of both the SE and ECA blocks is provided 

in Figure 3. 



Yaman and Kaya, Intelligent Methods in Engineering Sciences 4(2): 15-21, 2025 

- 18 - 

 

 

Figure 3. Structural Representation of SE and ECA Blocks 

Thanks to these mechanisms, the model has become 

more sensitive to color and structural patterns that 

represent prominent disease symptoms in leaf images. 

Mathematically, the contribution of these attention 

mechanisms can be explained by their direct impact on the 

learning process through vector-wise rescaling of the 

feature maps.  

The attention coefficients applied in SE blocks enhance 

the gradient sensitivity of the corresponding channels 

during backpropagation, thereby reinforcing inter-class 

discriminative capability. This is particularly effective in 

improving the learning of disease classes with lower 

representation in the dataset. 

In ECA blocks, the 1D convolution operation captures 

local channel dependencies in a parameter-efficient 

manner. The resulting attention weights are applied to each 

channel output in a less complex but still effective way. As 

a result, the model’s overall classification accuracy 

increases, and more importantly, its generalization 

performance on test data improves significantly. 

Following these blocks, a max pooling layer is employed 

to reduce the spatial dimensionality of the feature maps. A 

global average pooling (GAP) layer then removes the 

spatial information entirely, resulting in a fixed-length 

feature vector. This vector is processed by a fully 

connected dense layer with 256 neurons, followed by a 

dropout operation to mitigate overfitting. Finally, a 

softmax output layer is used for three-class classification.  

The model was trained with the following 

configuration: 

Optimizer: Adam (learning rate = 1e−4) 

Loss function: Categorical cross-entropy with label 

smoothing 

Batch size: 16 

Epochs: 200 (with early stopping set to 20 epochs) 

Callbacks: ModelCheckpoint, ReduceLROnPlateau 

 

Figure 4. Training and Validation Accuracy Curve 

As illustrated in Figure 4, the training process 

progressed rapidly and steadily, with the validation 

accuracy reaching approximately 90% within the first 10 

epochs.  No significant divergence was observed between 

the training and validation curves. In particular: 

The early stopping strategy effectively prevented 

overfitting. 

Thanks to label smoothing, the validation curve 

occasionally surpassed the training curve, indicating 

improved generalization. 

Class weighting contributed to a better representation of 

underrepresented classes. 

3. RESULTS AND DISCUSSION 

In this study, a novel convolutional neural network 

(CNN) architecture was proposed, incorporating color 

space fusion and enhanced by Squeeze-and-Excitation 

(SE) and Efficient Channel Attention (ECA) blocks. The 

model's classification performance was evaluated on the 

RoseNet dataset, focusing on three classes: Black Spot, 

Downy Mildew, and Fresh Leaf.  The performance of the 

model was analyzed not only in terms of accuracy, but also 

using multiple evaluation metrics such as precision, recall, 

F1-score, as well as training and inference time. In this 

respect, the proposed model distinguishes itself from 

conventional CNN-based approaches in the literature 

through its methodological depth and comparative 

comprehensiveness. 

On the test dataset, the model achieved an overall 

accuracy of 95.65%, with a precision of 95.68%, recall of 

95.65%, and F1-score of 95.64%. These results 

demonstrate a high degree of consistency and robustness 

across all major classification metrics. 

As shown in Figure 5, the model achieved 100% 

classification accuracy for the Downy Mildew class, 

correctly predicting all samples belonging to this category. 

In the case of the Black Spot class, a small number of 

misclassifications were observed, most of which were 

confused with the Fresh Leaf class. This suggests the 

presence of borderline cases where the visual symptoms of 

disease resemble those of healthy leaves. 
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Figure 5. Test Confusion Matrix 

The success of the proposed model can be attributed to 

three key factors:  

1-) Color Space Fusion (RGB + HSV + YCrCb): The 

enrichment of visual spectral diversity through a 9-channel 

input enabled more effective discrimination of disease 

patterns based on texture and color. 

2-) Attention Blocks (SE + ECA): Channel-wise 

attention mechanisms emphasized the relative importance 

of each feature map, enhancing the model’s ability to 

distinguish between classes. 

3-) Validation-Oriented Training: Techniques such as 

Z-score normalization, label smoothing, and class 

weighting mitigated inter-class imbalances and 

significantly improved the model’s generalization 

capability. 

Moreover, the proposed model was evaluated not only 

in terms of classification accuracy, but also with respect to 

model complexity, processing time, and metric diversity. 

This comprehensive assessment demonstrates a 

scientifically rigorous and holistic approach that 

differentiates the proposed method from similar studies in 

the literature. A comparative summary of key related 

works is presented in Table 1 below. 

Table 3.1. Literature Comparison 

Ref 

No 

Author(s) Year Dateset Characteristics Method Performance Metrics 

1 Mohanty et al. 2016 PlantVillage dataset (e.g., tomato, 

potato) with 38 classes and 54,306 

images 

CNN Accuracy: 99,35% 

2 Ferentinos 2018 Various plants – 25 classes, 87,848 

images 

AlexNet, 

GoogLeNet, VGG 

Accuracy: 99,53%  

3 Sankaran et al. 2010 Diverse plant species (hyperspectral 

images) 

Hyperspectral, 

thermal, and 

fluorescence 

analysis 

 

4 Kamilaris & Prenafeta-

Boldú 

2018 Various plants – Review, class 

information varies 

CNN, RNN  
 

5 Ali et al. 2021 Different plant species – Review 

study 

Deep Learning 

methods 

 

6 Too et al. 2019 PlantVillage (Multiple plant species) 

– 38 classes, 54,306 images 

DenseNet, ResNet, 

MobileNet 

Accuracy: 99,44% 

7 Fuentes et al. 2017 Tomato – 9 classes, 13,424 images YOLO Precision: 89,2%, 

Recall: 83,9% 

8 Arivazhagan et al. 2013 Banana – 4 classes, 500 images Color + shape 

features 

Accuracy: 91,79% 

9 Rahman et al. 2020 Various plants – 5 classes, 3,000 

images 

GAN + CNN Accuracy: 96,4%, F1-

score: 94,8% 

10 Basak, Shuvo 2025 RoseNet (Rose) – 3 classes, 917 

images 

Lightweight CNN 

+Color 

transformation 

Accuracy: 96,1% 

11 Latifah Nabilah et al. 2023 Kaggle (Rose Leaf Disease) – 

~14,910 images, 3 classes 

CNN + RMSprop, 

Early Stopping 

Accuracy: 99.96% 

12 Mridha et al. 2024 Rose, Mango, Tomato – Mixed leaf 

data, multi-class 

Xception-based 

transfer learning 

architecture 

Accuracy: 98% 

Precision: 99% 

Recall: 98% 

F1-score: 98% 

13 Rajbongshi et al. 2020 RoseNet (Rose) – 3 classes, 917 

images 

MobileNet Accuracy: 96,11% 

 
Yapılan Çalışma 2025 RoseNet (Rose) – 3 classes, 917 

images 

CNN + SE-ECA 

Blocks 

Accuracy: 95.65%, 

F1-score: 95,64% 

Precision: 95,68%, 

Recall: 95,65% 

 

Upon examining the studies presented in Table 1, it is 

evident that a wide range of approaches have achieved 

remarkably high accuracy rates in the field of image-based 

plant disease classification. Most of these studies rely on 

large-scale datasets (e.g., PlantVillage) and powerful deep 

learning architectures (such as AlexNet, VGG, DenseNet, 

Xception), while leveraging techniques such as data 

augmentation, transfer learning, color space 

transformation, and optimization algorithms to enhance 

model performance. 

The performance of the present study becomes more 
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meaningful when compared specifically with similar 

research conducted on the RoseNet dataset. For instance, 

models developed by Rajbongshi et al. (2020) and Basak 

& Shuvo (2025) using the same dataset reported accuracy 

rates of 96.11% and 96.1%, respectively. In contrast, our 

study achieved 95.65% accuracy and an F1-score of 

95.64%, through a custom-designed CNN architecture 

enhanced with Squeeze-and-Excitation (SE) and Efficient 

Channel Attention (ECA) blocks. These results indicate a 

performance level that is highly comparable and consistent 

with the aforementioned studies.  

While some studies employing larger and more diverse 

datasets such as Latifah Nabilah et al. (2023) have reported 

accuracy rates exceeding 99%, such high performance is 

often attributed to the dataset’s volume and variability, as 

well as the representational power of transfer learning-

based deep architectures. Therefore, in small-scale and 

limited data environments, the performance of models 

built from scratch gains importance in terms of 

architectural efficiency and interpretability when assessed 

comparatively. 

Indeed, models achieving high accuracy through GAN-

based data generation (Rahman et al., 2020) or transfer 

learning with pretrained architectures like Xception 

(Mridha et al., 2024) also highlight the necessity for 

models to be not only accurate but also resource-efficient 

and customizable for real-world deployment. In this 

context, the proposed model demonstrates a competitive 

level of performance compared to other recent works 

based on the RoseNet dataset, while offering a more 

practical and application-oriented solution through its low 

parameter count and short inference time. 

4. CONSLUSION 

This study proposes a novel convolutional neural 

network (CNN) architecture for the detection of common 

fungal diseases in rose leaves. The model is enhanced with 

channel-wise color space fusion (RGB, HSV, YCrCb) and 

attention mechanisms, specifically Squeeze-and-

Excitation (SE) and Efficient Channel Attention (ECA) 

blocks. The architecture was evaluated on the RoseNet 

dataset for a three-class disease classification task, 

achieving an accuracy of 95.65%, along with high 

performance in precision, recall, and F1-score metrics. The 

SE and ECA blocks, which emphasize salient features at 

the channel level, significantly improved the model’s 

discriminative capability by enhancing class separability. 

With a total parameter count of only 1.03 million and an 

inference time of 376 ms per image, the proposed model 

demonstrates strong potential for deployment on 

embedded or mobile systems. Moreover, the use of Z-

score normalization, class-weighted loss, and label 

smoothing helped mitigate overfitting tendencies during 

training and contributed to a well-balanced classification 

performance. The architecture developed in this study 

offers a competitive performance with reduced 

computational demand and faster inference, underscoring 

the importance of locally optimized deep learning models 

for constrained environments. 

Furthermore, testing the generalizability of the model 

on datasets involving different plant species and disease 

types, as well as evaluating its deployment on low-power 

microcontroller platforms (e.g., Raspberry Pi, Jetson 

Nano), could support the broader adoption of this approach 

as a real-time, cost-effective decision support system for 

both academic research and practical field applications. 
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