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 In embedded systems, large datasets are difficult to process in real-time due to limited processing 
power, memory capacity, and energy resources. In order to solve these difficulties, the use of 

algorithms that reduce data size and complexity has become a critical requirement. This study 

examines the techniques of five algorithms used for data reduction in embedded systems. The 
techniques of dimensionality reduction, numerosity reduction, data compression, data cube 

aggregation, and discretization algorithms are applied to a dataset. The dataset consists of load and 

angle data recorded every five seconds for three months. The selected data reduction techniques 

are evaluated to reduce data processing load, optimize storage requirements, and reduce energy 
consumption. The results show that each algorithm offers advantages according to different 

application requirements. The findings obtained in this study provide a guiding framework for the 

optimization of data processing processes in embedded systems. The results provide important 

information that can help system designers select algorithms suitable for application requirements. 
In the future, combining these algorithms with hybrid approaches can further increase the data 

processing capacity and efficiency of embedded systems. 
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1. Introduction 

Embedded systems are specialized systems with 

hardware and software components designed to perform a 

specific task. They are widely used in many areas, from 

automotive to health and defense to industrial automation, 

and often require real-time data processing [1]. While 

these systems try to overcome high data flow and complex 

algorithms, they also struggle with limited processing 

power, memory, and energy constraints [2]. In recent 

years, the rapid development of sensor technologies and 

the widespread use of IoT (Internet of Things) applications 

have made the concept of big data even more important. 

The increasing demands for instant data sharing and 

processing of embedded devices over networks are 

straining the data communication bandwidth and storage 

areas in embedded systems [2, 3]. These challenges clearly 

reveal the need for data reduction algorithms to reduce 

data volume to manageable sizes and improve system 

performance. 

In embedded systems, processing power, and memory 

resources are quite limited compared to desktop computers 

or servers. Therefore, it is often not possible to process 

high volumes of data in raw form [4]. Sensors (LiDAR, 

radar, camera, etc.) used in autonomous vehicles produce 

large amounts of data. Real-time processing of this data 

directly affects not only the processor speed and memory 

capacity of the system but also energy consumption. 

Similarly, wearable devices or patient monitoring systems 

used in healthcare also need methods to optimize data 

transfer and recording processes due to battery life 

constraints during data processing [5, 6].  

In light of these requirements, data reduction techniques 

are used to reduce data size, eliminate unnecessary or 

duplicate information, and create more compact data 

structures with preserved important features. Thus, both 

data storage and data transfer costs are significantly 

reduced, and the system's real-time decision-making 

ability is supported [7]. 

Data reduction methods can be classified as lossy or 

lossless. In lossless methods, the compressed data obtained 

can match the original one-to-one, while in lossy methods. 

However, the data size has been reduced, and it can be 

observed that some information has been irreversibly lost. 

In the context of embedded systems, the methods used are 

usually directly related to the criticality of the application 

and data integrity requirements. For example, while 

lossless compression methods are preferred when working 

on medical data, lossy methods can mostly be adopted in 

industrial sensor data or high-volume image/video data 
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[8]. 

Data reduction techniques are examined in various 

categories in the literature. Dimensionality Reduction 

extracts the basic components from high-dimensional data 

and represents the information in fewer dimensions. For 

example, PCA (Principal Component Analysis) and LDA 

(Linear Discriminant Analysis) can provide effective 

results even with limited processing power in embedded 

applications [9]. Numerosity Reduction detects repetitions 

or similarities in the data and eliminates unnecessary data 

points. This method is especially important in applications 

where sensor data is frequently sampled [10]. Data 

Compression reduces data size with lossy or lossless 

compression algorithms. In addition to classical methods 

such as Huffman, LZ77, and RLE (Run-Length Encoding), 

special compression solutions are optimized for embedded 

systems [11]. Data Cube Aggregation summarizes data by 

performing aggregation (sum, average, maximum, etc.) on 

certain dimensions in multi-dimensional datasets. It is 

frequently preferred, especially in large data warehouses 

and some IoT platforms [12]. Discretization Operation 

reduces the data volume by dividing continuous-valued 

data points into certain discrete intervals (binning, 

histogram, etc.). In this way, both memory and processing 

load can be significantly reduced [13]. 

In studies where these methods are used together or in a 

hybrid manner, it has been observed that data reduction 

performance is significantly improved, and application-

specific requirements are met more effectively [7, 14]. For 

example, in image processing-based embedded systems, 

dimensionality reduction (PCA) and lossy compression 

(like JPEG) are common approaches. In this way, both the 

size of the data is reduced, and the accuracy of the 

classification or detection algorithms (e.g. machine 

learning, deep learning) is preserved. 

This article provides a systematic review of data 

reduction algorithms that can be used to improve real-time 

data processing in embedded systems. Considering the 

constraints of embedded systems, such as processing 

power, memory, and energy, the factors that guide the 

selection of data reduction algorithms are discussed. The 

performance of different data reduction methods 

(dimensionality reduction, numerosity reduction, data 

cube aggregation, data compression, discretization) in 

specific application scenarios is monitored. 

The rest of the article discusses the need for real-time 

data processing in embedded systems and the related 

challenges. Then, data reduction methods widely adopted 

in the literature are introduced, and their advantages, 

disadvantages, and application examples are presented. 

Then, these methods are compared in the context of certain 

performance criteria (processing time, memory usage, 

accuracy, energy consumption). The last section discusses 

future research directions, integration of data reduction 

algorithms with artificial intelligence, and suggestions for 

embedded system designers. 

2. Real-Time Data Processing in Embedded 
Systems 

Real-time data processing in embedded systems 

presents several challenges at both hardware and software 

levels. These systems usually have limited processing 

power, memory capacity, and energy resources, making it 

difficult to perform complex operations in real-time. The 

need to meet time constraints requires that operations be 

completed within a certain time, which makes it difficult 

to ensure system reliability, especially in the case of 

unpredictable data flows or external interruptions. In 

addition, ensuring the accuracy and consistency of data 

from sensors, solving synchronization problems, and 

managing potential errors pose significant technical 

hurdles in the application development process. The fact 

that embedded systems are usually special purpose makes 

application development processes more complex by 

limiting the ability to utilize standardized solutions. These 

challenges significantly affect the design and integration 

of real-time data processing systems. 

2.1. Embedded Systems 

Embedded systems consist of hardware and software 

components customized to perform a specific function or 

a set of related functions. These systems, usually built on 

a single microprocessor or microcontroller and operating 

under constraints such as limited memory, limited 

processing power and energy consumption, have a 

narrower application area than a complex desktop or server 

architecture [1]. For example, an automobile engine 

control unit (ECU) processes data from certain sensors in 

real-time and regulates the operation of the engine 

according to driving conditions. Similarly, the concept of 

embedded systems includes medical devices, industrial 

robot controllers, smart home systems, and IoT devices.  

Unlike general-purpose computers, embedded system 

hardware is designed to perform a specific task as 

efficiently as possible. The application software and 

operating system (mostly Real-Time Operation System: 

RTOS) are generally in close communication with the 

hardware. The need for instant decision-making and 

processing is at the forefront, especially in critical systems 

(such as automotive, defence, and medical). They often 

require optimized algorithms and efficient software 

hardware integration due to limited resources such as 

memory, processing power, and battery life [15]. 

2.2. Real-Time Data Processing Requirements 

Real-time processing refers to processing the input data 

within a certain time limit and the appropriate response 

given by the system. This time limit varies depending on 

the application, but in some cases, it can be at the level of 

microseconds. Real-time systems are divided into hard 
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real-time and soft real-time systems. In hard-time systems, 

the time constraint is never exceeded. An example of this 

system is the inflation mechanism of an airbag. In soft-

time systems, it is acceptable to exceed the time constraint 

rarely, but this causes a performance decrease. An example 

is the occasional skipping of a few frames in a live video 

broadcast application [2]. 

The need for real-time processing in embedded systems 

means tightly scheduling the data collection and decision-

making cycle. In high-volume or high-frequency data 

streams, direct raw data processing can overload the 

processor and cause delays. For this reason, data reduction 

techniques come into play and pre-filter unnecessary or 

repetitive information. Thus, the system's time and 

resource usage efficiency increases and critical decisions 

can be made within the desired time limit [16]. 

2.3. Data Volume Increase and Limited Resources 

The number and variety of sensors are increasing in 

industrial applications, robotic systems, autonomous 

vehicles, smart grids and even wearable health 

technologies. The increasing number of sensors and sensor 

resolutions cause the data volume to grow exponentially 

[5]. Processing, storing or transmitting this data over the 

network at the same speed seriously challenges embedded 

systems with hardware and software constraints. 

Memory Constraints: Many embedded platforms have 

limited RAM capacities ranging from just a few hundred 

kilobytes to a few megabytes. In cases where large datasets 

are processed, problems such as memory overflow and 

memory insufficiency occur. 

Processing Power Constraints: Embedded processors or 

microcontrollers have much lower clock speeds and core 

counts than high-performance CPU/GPU units; therefore, 

they may not have enough computational power for 

complex data processing algorithms. 

Energy Consumption: Continuous data processing leads 

to high energy consumption in mobile or battery-powered 

embedded devices. This not only reduces battery life but 

also introduces additional challenges, such as device 

heating issues [6]. 

These constraints indicate that lightweight, optimized, 

and as real-time as possible data reduction methods are 

needed for embedded systems to handle high volumes of 

data effectively. 

2.4. Impact of Data Reduction on Real-Time 
Performance 

Data reduction aims to reduce the memory and 

processing load by reducing the size of the relevant data. 

For example, it is possible to shorten the real-time 

inference time by reducing the continuously flowing 

sensor data size to provide input to a neural network. 

Similarly, reducing high-dimensional image data with 

lossy compression techniques (e.g. JPEG, H.264) can 

reduce the delays in video streams inside or outside the 

embedded system [7, 14]. 

The selection of data reduction methods often considers 

the balance between the real-time processing constraint 

and the accuracy or precision requirements of the system. 

While a small data loss is acceptable in some applications, 

data integrity may need to be preserved in critical 

applications. This balance determines the method to be 

selected and the operating parameters of the method. 

In summary, resource and time constraints shape the 

need for real-time data processing in embedded systems. It 

constitutes a challenging problem area due to the 

constantly expanding data volume. The next section 

discusses various data reduction techniques that can solve 

these problems. 

3. Data Reduction Algorithms 

Data reduction is the general name for various methods 

and algorithms applied to make large or high-volume 

datasets more manageable. In embedded systems, it is 

critical to implement a data reduction strategy that is both 

time-efficient and energy-efficient, considering memory 

and processor constraints. Although there are various 

classifications in the literature, five basic approaches that 

are frequently mentioned are examined in this study [17, 

18]: Dimensionality Reduction, Numerosity Reduction, 

Data Compression, Data Cube Aggregation, and 

Discretization. 

The area of use of each method varies according to the 

balance of advantages and disadvantages and application 

needs. The basic principles of these techniques and sample 

usage scenarios in embedded systems are summarized 

below. 

3.1. Dimensionality Reduction 

Dimensionality reduction methods aim to express the 

data in a lower dimensional space by eliminating 

unnecessary or repetitive features in high dimensional 

datasets. Thus, significant savings are achieved in terms of 

computation and storage. Principal Component Analysis 

(PCA), Linear Discriminant Analysis (LDA) and 

Autoencoder Based Reduction are the main methods [17]. 

The PCA method finds the directions of variability in the 

data and limits the number of dimensions to these 

components. In the LDA method, transformations that 

increase class separation are applied, especially in 

classification problems. The autoencoder-based reduction 

method offers an approach to re-encoding data in a low 

dimension using autoencoder networks used in deep 

learning [19]. 

3.2. Numerosity Reduction 

Numerosity reduction reduces the data volume by 

eliminating repetitive, similar or unnecessary data points 

in the dataset, especially in environments with frequent 

samples, such as sensor data [10]. In this technique, the 
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size of the raw data is reduced by taking data at fixed or 

adaptive intervals with sampling. By dividing the signal 

into specific windows using the segmentation method, an 

average value representing each window is expressed. 

With the clustering-based method, data points are grouped 

according to their similarities, and each group is expressed 

by a single center or representative [20]. It is relatively 

simple to implement and has low computational cost; it 

can significantly reduce energy consumption in embedded 

systems. However, if the sampling rate is not adjusted 

correctly, it can lead to the loss of critical information. 

3.3. Data Compression 

Data compression is the process of transforming data in 

a way that requires less storage space. It is divided into 

two: lossy and lossless [11]. Methods such as Huffman, 

Deflate (gzip, zlib), LZ77 and LZMA are frequently used 

in lossless compression. In lossy compression, media-

oriented formats such as JPEG, MP3, and H.264/265 have 

been integrated into systems in almost every field [21]. In 

autonomous vehicles or security cameras, lossy 

compression is used to compress and transmit images 

instantly. In signals such as blood pressure and ECG, 

where the data is more sensitive, lossless compression is 

preferred to protect data integrity. Data compression 

significantly reduces data size, optimizing transmission 

time and storage requirements. However, data quality may 

decrease in lossy compression, and the compression ratio 

may be limited in lossless methods, which may increase 

processing costs. 

3.4. Data Cube Aggregation 

A data cube is a data structure that performs aggregation 

(sum, average, max, etc.) operations on information in 

multidimensional data warehouses more quickly. This 

method is implemented in embedded systems by recording 

only summary statistics instead of keeping all the data. In 

this method, data collected by many sensors from different 

times and places in an example IoT system are collected 

and stored according to certain dimensions (e.g. time, 

geographic location, device type). In another application 

example, energy consumption data from different regions 

for smart grids can be aggregated according to time 

periods, and real-time estimates can be made [12]. While 

this method reduces memory and processing load by 

summarizing large datasets at a statistical level, the 

process of creating and updating a multidimensional cube 

can be complex. In addition, since summary data is kept 

instead of detailed data, there is a possibility of missing 

micro-level anomalies. 

3.5. Discretization 

Discretization aims to reduce the data volume by 

expressing continuous data points in certain categories or 

intervals. In this method, if sensor data is measured with 

0.01 precision, it is possible to reduce the data size and 

complexity by dividing it into groups with 0.1-step 

intervals. In discretization, equal-width binning, equal-

depth binning and histogram-based methods are frequently 

used. The equal-range divides the data into equal-width 

sub-intervals and rounds each point to the relevant 

interval. The equal-depth performs discretization so that 

the number of data samples in each sub-interval is equal. 

In histogram-based methods, histograms that 

approximately represent the data distribution are created 

using a certain number of bins [13]. In embedded systems, 

it reduces the data volume by not performing additional 

processing or recording unless the signal approaches a 

critical value. In machine learning, it is used to simplify 

the model by dividing continuous-valued features into 

certain categories before entering the classification or 

regression model. This method is simple and fast; the 

dataset is more understandable and less complex. 

However, making the wrong choice in selecting sub-

ranges may result in losing important information or 

distortion of the data distribution. 

3.6. Comparison of Methods 

Table 1 summarizes the typical advantages and 

disadvantages of the data reduction techniques examined 

in the study. It also points out the basic factors to be 

considered in embedded systems. 

Each embedded application has its own requirements 

for accuracy, energy, memory, and real-time. Therefore, 

the data reduction technique to be chosen is often 

determined on an application-specific basis. In some cases, 

a hybrid use of multiple methods (combining numerosity 

reduction and compression) may provide the most optimal 

solution. 
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Table 1. Comparison of Data Reduction Methods 

Method Advantage Disadvantage 

Typical 

Application

s 

Dimensionalit

y Reduction 

Significant 

reduction in 

number of 

dimensions 

Processing load 

may increase 

due to complex 

matrix 

operations  

Image/sign

al 

processing, 

machine 

learning 

Numerosity 

Reduction 

Easy 

implementation

, low 

computational 

cost 

Incorrect 

sampling 

settings may 

destroy critical 

information 

IoT sensor 

networks, 

wearables 

Data 

Compression 

Significant 

reduction in 

data volume 

(lossy 

compression) 

Limited rate in 

lossless 

methods, 

information 

loss in lossy 

methods 

Medical 

data, 

video/imag

e streaming 

Data Cube 

Aggregation 

Fast 

summarization 

of 

multidimension

al data 

Loss of detail, 

multidimension

al cube creation 

may be 

complicated 

Industrial 

IoT, data 

warehouses 

Discretization 
Simple, fast, 

categorization 

Poor range 

selection may 

distort data 

distribution 

Sensor 

triggering, 

machine 

learning 

pre-

processing 

4. Experimental Study 

In this study, the performance of the proposed data 

reduction algorithms for real-time data processing in 

embedded systems is investigated using load and angle 

data recorded every five seconds for three months. The 

experimental study investigated Dimensionality 

Reduction, Numerosity Reduction, Data Compression, 

Data Cube Aggregation and Discretization techniques on 

the dataset, respectively. The implementation details, 

results and visualization of the results of each technique 

are presented. Various metrics such as data size reduction 

rate, information loss, computation time and compression 

accuracy are used to measure the effectiveness of these 

algorithms. 

4.1. Dataset 

The dataset used in the experimental study includes 

measurements taken from load and angle sensors 

integrated into embedded systems for three months. These 

data were collected in real-time to evaluate the 

environmental condition and performance of the system. 

The measurements were recorded from both sensors at 5-

second intervals, and 1,555,200 data points were obtained 

for each sensor. The structure of the dataset can be 

summarized as follows: 

Load Sensor: Used to measure the load values applied 

to the system in kilograms. 

Angle Sensor: Used to measure the inclination or 

orientation angles of the system in degrees. 

Measurement interval: 5 seconds. 

Collection Period: 3 months (approximately 90 days). 

Data: It has a very high data density in raw data format. 

Separate time series were created for each sensor. A 

sample section taken from the dataset is given in Table 2. 

Table 2. Section of Dataset 

Timestamp Data1 (X) Data2 (Y) 
Data3 

(Load) 

2024.11.15 16:47:03 0 0 0 

2024.11.15 16:47:08 0 0 0 

2024.11.15 16:47:13 -1 1 0 

2024.11.15 16:47:18 0 0 95 

2024.11.15 16:47:23 -1 0 0 

2024.11.15 16:47:28 -1 0 71 

2024.11.15 16:47:33 -1 0 82 

2024.11.15 16:47:38 -1 0 77 

2024.11.15 16:47:43 -1 0 75 

2024.11.15 16:47:48 -1 0 74 

2024.11.15 16:47:53 -1 0 74 

2024.11.15 16:47:58 -1 0 73 

2024.11.15 16:48:03 -1 0 73 

2024.11.15 16:48:08 -1 0 74 

2024.11.15 16:48:14 -1 0 73 

2024.11.15 16:48:44 -1 0 72 

2024.11.15 16:48:49 -1 0 72 

2024.11.15 16:48:54 -1 0 72 

2024.11.15 16:48:59 -1 0 72 

2024.11.15 16:49:04 -1 0 71 

 

The experimental study was carried out in a time 

interval randomly sampled from the dataset in order to 

better understand the data reduction methods and to 

interpret them on readable data. The change of the X-Y 

angle over time in the used sub-dataset is shown in Figure 

1 and the change of the load values of the same sub-dataset 

over time is given in Figure 2. 

 

Figure 1. Change of X-Y angle over time 

 

Figure 2. Change of load values over time 

 
This dataset is a typical example of real-time data 

processing systems. It provides an ideal framework for 

evaluating the performance of data reduction algorithms. 
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When applying data reduction methods, preserving trends 

and patterns in the data of both sensors is critical to 

determine the success of the algorithms. Furthermore, the 

high dataset volume provides a suitable level of difficulty 

in measuring the effectiveness of data compression and 

processing techniques. 

4.2. Implementation of Algorithms 

Principal Component Analysis, PCA method was used 

for the dimensionality reduction process. The relationship 

between two variables (data1, data2) and load data (data3) 

in angle data was examined, and two main components 

representing most of the variance were obtained. This 

technique is aimed at expressing high-dimensional data 

with fewer components. PCA creates new components 

with linear combinations derived from original features 

(X, Y, Load). 

Principal Component 1 (PC1): The first component is 

the linear combination that captures the most variance in 

the data. 

Principal Component 2 (PC2): The second component 

captures the most remaining variance, perpendicular to the 

first component. 

Mathematically, the coefficients of the components are 

optimized in the learning process of PCA. The 

segmentation chart after PCA is applied to the dataset is 

given in Figure 3. 

 

Figure 3. Segmentation of X, Y and Load values 

 
Figure 3 visualizes the extent to which the components 

generated by PCA explain the total variance in the data. 

The bars show the proportion of variance that each 

component can explain on its own, while the cumulative 

variance line summarizes how much information the 

components contain. The first component (PC1) represents 

the most dominant pattern in the data, explaining 66.58% 

of the variance. The second component (PC2) explains an 

additional 20.35% of the variance, making it possible to 

represent 87% of the total variance with only two 

components. The slope of the graph clearly shows the 

decrease in information added as the number of 

components increases. This indicates that the marginal 

benefit of adding more components is limited and suggests 

that using only the first two components in the analysis is 

sufficient. The PCA plot is given in Figure 4 to examine 

how these two components represent the data and the 

relationships between the data. Figure 4 shows the 

reduction of the original three-dimensional dataset (X 

angle, Y angle, and load) into two principal components 

(PC1 and PC2). Each data point is represented in this new 

two-dimensional space. PC1 explains the largest variance 

in the data (approximately 66.58%), while PC2 explains 

the second largest variance (20.35%). 

 

 
Figure 4. Presenting of PCA components against each other 

 
The distribution of points in the graph represents how 

the relationships between the original variables are 

reflected in the two components. The areas where the data 

points are concentrated reflect how the data is grouped into 

a particular combination of features, while the width of the 

spread represents the diversity of the data. This graph 

shows that dimensionality reduction has been successfully 

achieved while preserving the underlying structure in the 

data. These results show that the dataset is largely 

concentrated in a single dimension, and therefore, 

dimensionality reduction is possible, which will 

significantly reduce the computational load. 

The k-Means clustering algorithm was applied for 

numerosity reduction. Load and angle data were 

summarized by dividing them into 3 clusters. This 

technique allowed the data to be represented by 

categorizing them without losing their original values. 

Clusters were determined and classified according to the 

similarities of each data point. Cluster 0 is the largest of 

the clusters and is mainly associated with low Load values. 

Cluster 1 is a medium-sized cluster representing higher 

Load values. Cluster 2 is the smallest cluster and 

represents more extreme values in Load and other features. 

The features of each cluster were analyzed according to 

their post-clustering means: 

Cluster 0: X ≈ 0.01, Y ≈ 0.00, Load ≈ 15.58 

Cluster 1: X ≈ -0.75, Y ≈ 0.98, Load ≈ 240.35 

Cluster 2: X ≈ -1.03, Y ≈ 0.00, Load ≈ 109.64 

These results show that the clustering algorithm 

separates the data significantly. 
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Figure 5 visualizes the results of the K-Means clustering 

algorithm on data reduced to two dimensions using PCA. 

Principal Component 1 and Principal Component 2 form 

the axes in the graph as the two main components 

explaining 66.58% and 20.35% of the total variance of the 

data, respectively. The graph shows how the data points 

are grouped in the new space by distinguishing three 

clusters with different colors. The distances between the 

clusters reveal how the features (X, Y and Load) are 

related to each other and how the K-Means algorithm 

separates the data using these relationships. This 

visualization allows an understanding of the clear 

separation between the clusters even when the data is 

represented in two dimensions with PCA. This analysis 

allows data processing with fewer representatives, 

especially for devices with limited processing capacity in 

embedded systems. 

 

Figure 5. K-Means clustering on reduced data 

 
For Data Compression, the Zlib compression algorithm 

is investigated. Data compression is a critical technique for 

optimizing bandwidth and storage requirements in 

embedded systems. In this study, the Zlib compression 

algorithm is used to reduce the size of the dataset. Zlib is a 

widely used algorithm that provides lossless compression 

to obtain a smaller data representation. Within the scope of 

the analysis, X, Y, and Load features in the dataset are 

subjected to compression. The findings obtained as a result 

of the application of the Zlib algorithm are as follows: 

Original data size: 4563 bytes 

Compressed data size: 486 bytes 

Compression ratio: 10.65% 

 

 
Figure 6. Original data size and the compressed data size 

comparison 

These results show that the Zlib algorithm provides 

significant data set compression and saves 89.35% of the 

storage space without data loss. Compressed data not only 

reduces storage requirements but also provides advantages 

during data transfer. The data compression results 

performed by the Zlib algorithm are visualized in Figure 6 

and Figure 7. Figure 6 compares the original data size and 

the compressed data size. This graph concretely 

demonstrates the effect of compression and shows that the 

Zlib algorithm provides a significant reduction in data size. 

Figure 7 presents a pie chart expressing the compression 

ratio as a percentage. This graph shows that approximately 

89.35% of the data is compressed, while only 10.65% 

remains as compressed data. These results show how 

effective Zlib is in data storage and transfer. The graphs 

emphasize that compression ratios can not only reduce 

data size but also improve performance in data processing 

processes in embedded systems. 

 

 

Figure 7. Compression ratio of data sizes 

The mean/median algorithm was used for Data Cube 

Aggregation. The data cube aggregation process was 

applied to summarize the data in certain time periods. In 
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this study, the data set was resampled at 1-minute 

intervals, and the mean and median values were calculated 

for each time period. The mean represents the general 

trend of the data and is obtained by dividing the sum of all 

data points by the amount of data. This value is used to 

understand the general level of the variables in the data set. 

The median represents the median value of the data and is 

more resistant to extreme values. This is especially useful 

in cases with extreme values in the data set. The results 

obtained from the application are given in Table 3. 

Table 3. Mean and Median Application Results 

Feature Mean Median 

X 0.01 0.0 

Y 0.00 0.0 

Load 55.77 10.0 

 

According to Table 3, the mean and median values for 

X and Y are quite low and close to each other. This 

indicates that the data is symmetrically distributed. 

However, in critical applications, this method may cause 

errors by resetting the direction of the orientation. The 

Load feature has a higher mean, and the median is quite 

lower than the mean, indicating that the data is skewed. 

This technique helps save energy in embedded systems by 

facilitating the analysis and storage of the data set. 

The binning algorithm was used for discretization. 

Discretization was applied to transform continuous data 

into discrete categories. Discretization divides continuous 

data into categories by dividing them into specific intervals 

and facilitates data analysis and modelling processes. In 

this context, the binning method was used on the X, Y, and 

Load features in the data set. The data was divided into 5 

categories (bins) with equal width for each feature. Each 

bin was defined with a specific interval, and the data was 

assigned to categories according to these intervals. The 

discretization process is given in Figure 8. 

 

Figure 8. Discretization process chart 

In Figure 8, the distributions of Load, X, and Y features 

divided into certain categories by the binning method are 

shown as bars. Each color represents a feature, and the 

height of the bars indicates how many times this feature 

has been in a certain bin (category). Blue bars show the 

distribution of load values and indicate that the load is 

concentrated in certain intervals. Higher frequencies are 

observed, especially in subcategories (e.g. low load 

values). Orange bars represent the distribution of the X 

feature in different intervals (bins). The distribution is 

generally concentrated in low intervals. Green bars 

represent the distribution of the Y feature among bins, and, 

similar to other features, they exhibit a more concentrated 

distribution with low values. The categorical label of the 

relevant bin represents each data point. Since angle values 

are coordinate values, they have small intervals and are 

generally concentrated in low values. A wider distribution 

is observed in load values, which are grouped in certain 

intervals. The categorical representation of continuous 

variables with the binning algorithm facilitates data 

processing, especially in algorithms such as decision trees. 

In this way, the effect of extreme values is reduced, and 

the data set is given a more balanced structure. This 

technique offers an effective solution for making 

continuous data easily analyzable. 

5. Results 

In this study, the effectiveness of data reduction 

techniques in real-time data processing in embedded 

systems has been investigated comprehensively. The 

dataset consists of load and angle (X, Y) values recorded 

every five seconds for three months and was used to 

evaluate the performance of data reduction methods. 

During the study, Principal Component Analysis (PCA), 

K-Means, Data Compression with Zlib, Data Cube 

Aggregation, and Discretization (Binning) techniques 

were analyzed, and their results were evaluated. The 

results revealed the strengths and weaknesses of each 

algorithm, and recommendations were developed for 

application scenarios. 

5.1. Performance of Data Reduction Techniques 

Principal Component Analysis (PCA): PCA reduced the 

original three-dimensional data into two principal 

components and explained approximately 87% of the total 

variance. This shows that dimensionality reduction was 

successfully achieved by preserving the basic structures of 

the load and angle data. According to the obtained result, 

PCA offers an effective solution in cases where the data 

size is limited and preserving the basic variables is 

important. However, its performance may decrease in 

cases where the variance is low. 

K-Means Clustering: The K-Means algorithm applied to 

the data set reduced with PCA divided the data set into 

three clusters and revealed significant separations between 

the load, X, and Y features. The K-Means algorithm 

applied directly without PCA was especially supported by 

three-dimensional graphics, and the general distribution of 

the clusters was analyzed. K-Means was evaluated as an 

effective method for identifying natural groups in the data 

set. This technique is a powerful tool for summarizing and 

analyzing large data sets. According to the study, K-Means 



Saday et al., Intelligent Methods in Engineering Sciences 3(4): 108-117, 2024 

- 116 - 

 

is suitable for summarizing large data sets. However, 

determining the appropriate number of clusters and 

accuracy issues may occur in non-homogeneous data sets. 

Data Compression with Zlib: The Zlib algorithm has 

managed to compress the data size by 35% with the 

lossless compression method. This lossless compression 

method has provided a highly effective solution in data 

sizing and has been shown to provide advantages in data 

storage and transfer processes in embedded systems. This 

technique has provided significant storage and data 

transfer advantages by providing compression without 

data loss. The success of Zlib shows that the data set can 

have repetitive patterns and low information density. This 

is especially critical in real-time data processing 

applications in embedded systems because compressed 

data can be processed and transferred more quickly. As a 

result, the Zlib algorithm can be evaluated as an effective 

and lossless method for data reduction. According to the 

study results, lossless compression methods can be used 

where data loss cannot be tolerated. However, lossy 

compression methods can be evaluated in scenarios that 

require higher compression ratios. 

Data Cube Aggregation (Mean and Median): With this 

method, the data set is summarized, and the mean and 

median values for each feature are calculated. In particular, 

the median provided a more balanced data summary by 

reducing the effect of extreme values. This method, which 

speeds up the data processing process by reducing data 

density, has been evaluated as an effective solution for fast 

decision mechanisms in embedded systems. The mean and 

median values effectively represented data trends and 

facilitated the data analysis process. According to the 

results obtained, it is seen that this method is suitable for 

use in cases where there is no need for real-time processing 

or where it is sufficient to analyze past data by 

summarizing it. 

Discretization (Binning): The binning method was 

applied to convert continuous data into categorical 

intervals, and X, Y, and load features were represented in 

5 different bins (categories). This approach provided a 

powerful tool for understanding the distribution of features 

in different intervals and was supported by visualization. 

Binning provided suitable data preparation, especially for 

decision trees and similar algorithms. The discretization 

method converted the load data into discrete categories and 

showed that 70% of the data was collected at low levels. It 

is seen that the discretization process is suitable for cases 

where continuous data needs to be processed in categorical 

formats. However, the selection of threshold values can 

directly affect the accuracy of the results. 

5.2. Comparison of Algorithms 

Experimental studies have shown that each data 

reduction algorithm offers certain advantages for 

optimizing data processing performance in embedded 

systems. Each technique offers different advantages: 

PCA is a powerful tool for dimensionality reduction in 

highly correlated data sets. In this technique, the 

processing load is reduced while the basic features of the 

data are preserved. 

K-Means is a suitable method for representing data with 

categorical groups. In this technique, similar to PCA, the 

processing load is reduced while the basic features of the 

data are preserved. 

Zlib compression is ideal for reducing data transfer 

costs and optimizing storage requirements. Zlib provided 

bandwidth savings and storage optimization. 

Aggregation facilitates historical data analysis and data 

storage processes. In the study, an effective summarization 

method was presented to understand data trends. 

Discretization can be used in the classification and 

decision-making processes of continuous data. It 

facilitated the representation of continuous data at discrete 

levels. 

This study has revealed the role of data reduction 

techniques in real-time data processing applications in 

embedded systems. The obtained findings clearly show the 

advantages of data reduction techniques in terms of size, 

speed and ease of data processing. It has been revealed 

how the combination of PCA and K-Means is effective in 

the process of size reduction and grouping by preserving 

the relationships in the data set. The potential benefits of 

the Zlib compression in data storage and transfer processes 

are emphasized. The effects of Data Cube Aggregation and 

Binning methods in summarizing the data set and 

categorical transformation processes are explained. 

The results of this study provide important information 

on which algorithms to use to use the limited resources of 

embedded systems in the most efficient way. These results 

can provide guidance for deciding which algorithms to use 

in data processing processes in embedded systems. Each 

technique can be preferred according to the application 

scenario and system requirements. 

6. Conclusion 

This study evaluated the applicability of different data 

reduction algorithms to optimize real-time data processing 

processes in embedded systems. Five different algorithms 

(Dimensionality Reduction, Numerosity Reduction, Data 

Compression, Data Cube Aggregation and Discretization) 

were comprehensively analyzed using load and angle data 

recorded every five seconds for a month. The findings of 

the study revealed that each algorithm offers distinct 

advantages to efficiently utilize the limited resources of 

embedded systems. 

The Dimensionality Reduction (PCA) method 

significantly reduced the processing load in data sets with 

high correlation. It could express a large portion of the total 

variance with a small number of principal components. 
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The Numerosity Reduction (K-Means) algorithm allowed 

the data to be represented with categorical groups and 

summarized large data sets more understandably. The Data 

Compression (Zlib) method reduced the storage and 

communication costs by reducing the data size without 

loss. Data Cube Aggregation summarized the data 

according to time periods and facilitated the analysis 

processes. Discretization (Binning) contributed to the 

decision-making processes by converting continuous data 

to categorical levels. 

The results of this study provide guiding information in 

determining data processing and management strategies in 

embedded systems. The study reveals the strengths and 

weaknesses of each algorithm and provides system 

designers with the opportunity to choose the correct 

algorithm according to the application requirements. In the 

future, the development of hybrid models by combining 

these algorithms can increase data processing performance 

and the effectiveness of embedded systems in a broader 

range of applications. 

As a result, this study highlights the potential of data 

reduction techniques in embedded systems, providing a 

practical framework to meet real-time processing 

requirements with limited resources. The demonstrated 

methods have a wide range of applications for embedded 

systems, big data analytics, and machine learning 

applications. 

The algorithms used in this study were evaluated 

individually, and their performances in embedded systems 

were compared. In the future, it is thought that these 

algorithms can be combined with hybrid approaches to 

provide more flexible and powerful data processing 

solutions. For example, combining PCA and K-Means can 

perform dimensionality reduction and clustering 

operations. Similarly, both data dimensionality can be 

reduced, and analysis processes can be facilitated by 

combining compression methods with discretization 

techniques. 

However, it is recommended that comparative analyses 

be conducted with different data types and more complex 

algorithms. In addition, comparing compression 

algorithms with lossy methods and examining different 

clustering algorithms offers a research area for future 

studies. 
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