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 Studies have been conducted on the application of Augmented Reality to support rehabilitation of 

motor function recovery. The goal of these studies is to facilitate functional recovery training 
through patient interaction with virtual objects generated by AR. Many of them use special devices 

such as depth sensors to superimpose virtual objects at appropriate positions in images, but a 

simple method that does not require such a device is desired. In order to realize superimposition 
using only a personal computer (PC) with a camera, this study utilizes a deep neural network that 

estimates the 3-dimensional (3D) coordinates of keypoints, such as human joints, from camera 

images. Specifically, a coordinate transformation matrix for superimposition is calculated from 

the 3D coordinates of keypoints. In order to clarify the effectiveness of this method, we conducted 
an experiment to evaluate the superimposition accuracy. The results show that the accuracy was 

highest in the space near the keypoints that had been used to compute the coordinate 

transformation matrix, and the accuracy was even higher when the number of keypoints was small. 

This indicates that this method is more suitable for localized training such as hand rehabilitation 
than for whole-body training. Since this method can be used only with a PC with a camera, it is 

expected to be widely used for rehabilitation support. 
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1. INTRODUCTION 

Augmented Reality (AR) is a technology that 

superimposes virtual objects on images of the real world, 

enabling users to have perceptually rich experiences. 

Various applications of AR have been studied and put to 

practical use, and rehabilitation support system for motor 

function recovery are one of them. The rehabilitation 

support system enables patients to interact with virtual 

objects and enjoy games while training for functional 

recovery [1]. The ultimate goal of this study is to realize a 

simple AR-based rehabilitation support system using only 

a personal computer (PC) with a video camera. 

In order to superimpose a virtual object at an appropriate 

position in the image for the interaction, it is important to 

understand the positional relationship between the image 

coordinate system of the camera capturing the image and 

the three-dimensional (3D) coordinate system of the real 

world, i.e., to compute the transformation matrix from the 

3D coordinate system to the image coordinate system. 

Many previous studies of AR-based rehabilitation support 

systems have employed stereo cameras or depth sensors to 

obtain the transformation matrix [1].  

Recently, a simple monocular 3D pose estimation 

method has been developed by deep neural networks 

(DNN), and there are growing expectations for its 

application to AR-based rehabilitation [2]. The DNN-

based 3D pose estimation method estimates the 3D 

coordinates of keypoints on the human body  (e.g. human 

joints) only by using a single camera. The method includes 

direct regression of the keypoint coordinates [3], 

estimation with 3D heat map [4], [5], and estimating 3D 

pose from 2D pose (Lifting based 3D pose estimation) [6]-

[13]. There are two types of 3D coordinate systems used 

in the estimation: a local coordinate system (root-relative 

coordinate system) [3]-[7] whose origin is a specific part 

of the subject (e.g., the center of the waist), and a camera 

coordinate system [8]-[13]. In the latter case, it is also 

necessary to estimate the distance from the camera 

coordinate system to the human, which requires 

information on the intrinsic parameters of the camera. 

To realize a simple AR, this study utilizes a DNN that 

estimates the 3D pose of a subject based on the root-

relative coordinate system to calculate the matrix that 

transforms the coordinate system to the image coordinate 

system in real time (see Figure 1). This study uses 

MediaPipe Pose [7] , which is capable of high-speed 

processing, as such a DNN. However, owing to errors in 

the output of the DNN, a certain amount of error can be 
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expected in superimposition using the transformation 

matrix calculated from the output. The purpose of this 

paper is to clarify the feasibility of using 3D pose 

estimation network for AR-based rehabilitation support 

system in terms of superimposition accuracy. 

There are three main methods for computing the 

coordinate transformation matrix that have been used in 

previous studies on AR-based rehabilitation support 

systems: color markers and color cameras [14], stereo 

cameras [15], and depth sensors [16], [17]. [14] uses 

position information from a color marker attached to the 

hand, but it is not 3D. [15] calculates the transformation 

matrix by calibrating stereo cameras. [16] and [17] use 

depth sensors to measure the positions of keypoints on the 

fingers and the whole body, respectively, to obtain the 

transformation matrix. Compared to them, our approach is 

novel in that the transformation matrix is obtained by a 

DNN-based 3D pose estimation network. Furthermore, 

our method uses only a PC with a camera and requires no 

calibration or other preparations, making it a simple AR 

that anyone can use. 

Several studies have applied 3D pose estimation 

networks to measurements required for rehabilitation 

training, such as joint angle measurements. [18] evaluated 

the applicability of a 3D pose estimation network from 

experiments on the measurement of the active range of 

motion in the shoulder. However, from the literature 

review, no study has reported the applicability of 3D pose 

estimation networks to the calculation of the coordinate 

transformation matrix required for AR. The main 

contributions of this paper are as follows: 

1) The method for calculating the coordinate 

transformation matrix using a 3D pose estimation network 

is proposed. 

2) The relationship between the accuracy of the 

transformation matrix and the keypoint coordinates 

obtained from the 3D pose estimation network is 

experimentally clarified. 

3) It is shown that practical accuracy of AR for 

rehabilitation training can be obtained by selecting 

appropriate keypoints according to the rehabilitation target 

area. 

The rest of the paper is structured as follows. Section 2 

describes the proposed method for calculating the 

coordinate transformation matrix and a simple AR method 

using the matrix. The experiment for evaluating the 

proposed method and the results are provided in Section 3. 

In Section 4, the possibility of the proposed method for 

AR-based rehabilitation is discussed. Section 5 concludes 

the paper and provides future work. 

2. Method 

The method to compute the coordinate transformation 

matrix from the keypoint coordinates output by a 3D pose 

estimation network is proposed in Subsection 2.1. This 

method uses MediaPipe as the 3D pose estimation 

network. Subsection 2.2 then describes an AR method that 

uses the computed matrix. 

2.1. Transformation Matrix Calculation 

The equation for perspective transformation of 3D 

keypoints expressed in the root-relative coordinate system 

to images is as follows. 

𝑠 𝒗𝑗 
𝑖 = 𝑴𝑟

𝑖 ∙ 𝒗𝑗 
𝑟  (1) 

, where 𝑴𝑟
𝑖 , 𝒗𝑗 

𝑖 ,  𝒗𝑗 
𝑟 , and 𝑠  are the coordinate 

transformation matrix, the image coordinates, 3D keypoint 

coordinates, and a non-zero scalar, respectively. Each of 

these coordinates is expressed in terms of homogeneous 

coordinates. Rewrite Equation (1) using vector and matrix 

elements: 

  

Figure 1. The coordinate transformation matrix ( 𝑴𝑟
𝑖  in the figure) and the simple AR. The transformation matrix is 

calculated by using the 3D keypoint coordinates estimated by DNN and their image coordinates and is used to 
superimpose a virtual object placed virtually at an arbitrary location in 3D space onto the image. 
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𝑠 (

𝒗𝑗 
𝑖 (𝑥)

𝒗𝑗 
𝑖 (𝑦)

1

) = (

𝑐11 𝑐12 𝑐13 𝑐14
𝑐21 𝑐22 𝑐23 𝑐24
𝑐31 𝑐32 𝑐33 1

)

(

 

𝒗𝑗(𝑥) 
𝑟

𝒗𝑗(𝑦) 
𝑟

𝒗𝑗(𝑧) 
𝑟

1 )

  (2) 

, where the element 𝑐33 of 𝑴𝑟
𝑖  is set to 1 since the equation is up to scale. Equation (3) is obtained by eliminating 𝑠 in 

Equation (2). 

(
𝒗𝑗 
𝑖 (𝑥)

𝒗𝑗 
𝑖 (𝑦)

) = (
𝒗𝑗(𝑥) 
𝑟 𝒗𝑗(𝑦) 

𝑟 𝑧 1 0 0 0 0 − 𝒗𝑗(𝑥) 
𝑟 𝒗𝑗 

𝑖 (𝑥) − 𝒗𝑗(𝑦) 
𝑟 𝒗𝑗 
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𝑐31
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(3) 

The matrix in Equation (3) is a 2 ×  11 matrix using the 

3D and image coordinates of one keypoint, so if there are 

N keypoints, the matrix is 2N ×  11. Therefore, for 6 ≤

 N, the matrix becomes a tall matrix, and its Generalized 

Inverse Matrix is used to obtain the elements 𝑐11~𝑐33 of 

the coordinate transformation matrix. Since DNNs that 

estimate 3D keypoints generally estimate 13 or more 

keypoints [3]-[13], the transformation matrix can be 

obtained as long as 6 keypoints are visible, even if 

keypoint occlusion occurs. 

2.2. Simple AR 

Once the coordinate transformation matrix is obtained, 

the coordinates of the position where a virtual object is 

superimposed on the image are calculated using Equation 

(4). 

𝑠 𝒗𝑜 
𝑖 = 𝑴𝑟

𝑖 ∙ 𝒗𝑜 
𝑟  (4) 

, where 𝒗𝑜 
𝑖  and 𝒗𝑜 

𝑟  denote homogeneous image 

coordinates and homogeneous 3D coordinates of a virtual 

object. The computation of the transformation matrix and 

superimpositions is done for each image frame. 

3. Experiments 

Experiments were conducted to evaluate the 

effectiveness of the simple AR based on 3D pose 

estimation in terms of superimposition accuracy. In 

general, the accuracy of superimposition is evaluated by 

the re-projection error, which is the error between the 

image coordinates transformed from the 3D coordinates of 

a point in the real world by the transformation matrix and 

the actual image coordinates of the point. On the other 

hand, the simple AR method uses the 3D coordinate 

system recognized by the 3D pose estimation network 

(MediaPipe Pose in this study), so the 3D coordinates 

expressed in this coordinate system are used to evaluate 

the superimposition accuracy. There is no point other than 

keypoints at which such 3D coordinates can be obtained. 

Furthermore, since the human keypoints are not visible 

and therefore do not appear in the image, the image 

coordinates of the keypoints estimated by the 3D pose 

estimation network must be used. Therefore, the difference 

between the image coordinates transformed by the 

transformation matrix from the 3D coordinates of a 

keypoint estimated by the 3D pose estimation network and 

the image coordinates of the keypoint estimated by the 

same network is evaluated. 

 

Figure 2. Twenty-three keypoints used in the experiment 

In the experiment, the following 23 keypoints (see also 

Figure 2) were used among the keypoints estimated by 

MediaPipe Pose: 

Nose, Eye (right, left), Ear (right, left), Shoulder (right, 

left), Elbow (right, left), Wrist (right, left), Index-finger 

(right, left), Waist (right, left), Knee (right, left), Ankle 
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(right, left), Heel (right, left), Toe (right, left). 

The input videos to the MediaPipe Pose were taken from 

TNT15 [19], a motion capture dataset that is freely 

available for research purposes. Each video was taken by 

8 RGB-cameras from 8 different directions of a subject's 

activity in a laboratory. There are 4 subjects and 5 

activities consisting of walking, running on the spot, 

rotating arms, jumping and skiing exercises, and punching 

(i.e., 20 different videos). The duration of each activity is 

about 10 seconds, and the frame size of the videos is 800 

x 600. In our experiment, in order to use the left and right 

keypoints of the human body equally and to increase the 

number of data, we created videos with the video frames 

inverted left and right, and used a total of 40 types of 

videos (original and inverted). 

The transformation matrix was calculated by expanding 

the matrix in Equation (3) to 2N ×  11 matrix by using the 

estimated 3D coordinates of N keypoints. Here, four 

different experiments (Expt 1-4) were performed, 

depending on which keypoints were selected for the 

computation of the transformation matrix. The keypoints 

selected for each experiment are listed in Table 1. In each 

experiment, the re-projection error of the keypoints shown 

in Table 2 was evaluated over the five motions. An 

example of the re-projection in Expt 1 is shown in Figure 

3, and the results of each experiment are shown in Figure 

4, 5, 6, and 7, respectively. 

The frames per second (fps) of the pose estimation was 

almost 15 on a personal computer (Windows OS, Intel 

Xeon Silver 4214 CPU @ 2.20GHz, Nvidia GeForce RTX 

2080 Ti GPU), and there was no obvious decrease in 

computation time, even after the addition of the 

transformation matrix calculation and the re-projection 

process. 

 

Table 1. Keypoints used for the transformation matrix 
calculation in the experiment. Keypoints other than Nose are 
both left and right 

Expt 1 Expt 2 Expt 3 Expt 4 

Nose 

Eye  

Ear  

Shoulder  

Elbow  

Wrist  

Index-finger  

Waist  

Knee  

Ankle  

Heel  

Toe 

Nose  

Elbow  

Wrist  

Waist  

Knee  

Ankle  

 

Shoulder 

Elbow 

Wrist 

Index-finger 

 

Waist 

Knee 

Ankle 

Toe 

 

Table 2. Keypoints for which re-projection errors were 
calculated in the experiment 

Expt 1 Expt 2 Expt 3 Expt 4 

Nose 

Eye  

Ear  

Shoulder  

Elbow  

Wrist  

Index-finger  

Waist  

Knee  

Ankle  

Heel  

Toe 

Nose 

Eye  

Ear  

Shoulder  

Elbow  

Wrist  

Index-finger  

Waist  

Knee  

Ankle  

Heel  

Toe 

Shoulder 

Elbow 

Wrist 

Index-finger 

 

Waist 

Knee 

Ankle 

Toe 

 

 

Figure 3. Example of re-projection. Red filled circles indicate 
the 2D positions of the keypoints estimated by MediaPipe Pose. 
The yellow filled circles indicate the re-projected positions from 
the 3D coordinates of the keypoints estimated by the network.  

 

Figure 4. Re-projection errors in Expt 1. Numerical values are 
in pixels. 
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Figure 5. Re-projection errors in Expt 2. Numerical values are 
in pixels. Note that the maximum value of the scale is 60. 

 

Figure 6. Re-projection errors in Expt 3. Numerical values are 
in pixels. 

 
Figure 7. Re-projection errors in Expt 4. Numerical values are 

in pixels. 

4. Discussion 

Figure 4 shows that Heel (right) has the largest re-

projection error of 9.5 pixels when the transformation 

matrix is calculated using the 3D coordinate estimation 

results for the all keypoints. Estimating the amount of error 

in real space, since the image is 800 pixels wide and covers 

an area of 2,000 mm (TNT15_documentation on [19]), the 

amount of error is  9.5 / 800 ×  2000 =  23.8  mm. 

Since the median (50th percentile) of hand breadth of 

American women and men is 93.0 mm and 102.0 mm, 

respectively [20], this error amount is about 1 / 3.9 and 1 / 

4.3 of the hand breadth, respectively. Since the hand 

breadth is the width of four fingers except thumb, although 

this is a rough estimate, the magnitude of the error is 

approximately equal to the width of one finger. 

Figure 5 shows that the overall error increases when the 

number of keypoints used to calculate the transformation 

matrix is reduced. In particular, the errors for the keypoints 

not used in the calculation (Ear, Shoulder, Index-finger, 

Heel and Toe) are large. However, Eye was also not used 

in the calculation, but its error was not much worse. It may 

be calculated in such a way that the accuracy of the 

transformation matrix is increased in the space near the 

keypoints used for the calculation. Accordingly, since Eye 

is located close to Nose used in the calculation, its 

accuracy was probably preserved. 

However, Figure 6 and 7 do not show an increase in 

error compared to the case where all keypoints are used 

(Figure 4), but rather a decrease for Shoulder, Elbow, 

Wrist, Waist, and Toe, even though the number of 

keypoints used to calculate the transformation matrix has 

been reduced, respectively. Calculating the transformation 

matrix using the Generalized Inverse Matrix of the 

expanded matrix (2N ×  11) in Equation (3) is equivalent 

to finding the least-squares solution of the equation. 

Therefore, if the keypoints used in this calculation are 

distributed in a small space, an optimized matrix can be 

obtained within that range, and the accuracy is not reduced 

but rather increased within that range. 

 

Figure 8. Example of simple AR assuming rehabilitation 
support. Left: Virtual object and right hand interaction. Right: 

Angle indication in left elbow bending exercise. 

If the position of the superimposed virtual object is off 

by as little as one finger, there should be no problem in 

interaction with virtual object and its display. Based on the 

above considerations, the experiments revealed that, as an 
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AR system for rehabilitation support, it is better to design 

the system that superimposes virtual objects (see Figure 8) 

using the transformation matrix obtained from keypoints 

(6 ≤ N) near the body part of the target of functional 

recovery training. 

5. Conclusion 

In order to construct a simple AR system for 

rehabilitation support, we proposed a method to calculate 

the coordinate transformation matrix required for 

superimposition of virtual objects using MediaPipe Pose, 

which estimates the 3D coordinates of keypoints, and 

experimentally verified the superimposition accuracy 

using this method. The results showed that the accuracy 

was highest in the space near the keypoints that had been 

used to compute the transformation matrix, and the 

accuracy was even higher when the number of keypoints 

was small. Consequently, this method is more suitable for 

localized training such as hand rehabilitation than for 

whole-body training. The fps for the whole process was 

almost 15. Since rehabilitation training is generally 

performed with slow movement, it can be said that the 

processing speed is enough. In the future, we will develop 

an AR system for localized training and conduct practical 

verification. 

On the other hand, the coordinates estimated by 

MediaPipe Pose are represented by a root-relative 

coordinate system with the waist as the origin, so it is not 

suitable for training that evaluates waist motion. 

MediaPipe Pose was employed for this study because it is 

a lightweight DNN with high processing speed, but 

another DNN that estimates the world coordinates of 

keypoints will be investigated to expand the scope of the 

application. 
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